Kirish Roʻyxatdan oʻtish

Docx

  • Referatlar
  • Diplom ishlar
  • Boshqa
    • Slaydlar
    • Referatlar
    • Kurs ishlari
    • Diplom ishlar
    • Dissertatsiyalar
    • Dars ishlanmalar
    • Infografika
    • Kitoblar
    • Testlar

Dokument ma'lumotlari

Narxi 35000UZS
Hajmi 890.9KB
Xaridlar 0
Yuklab olingan sana 29 May 2025
Kengaytma docx
Bo'lim Kurs ishlari
Fan Algebra

Sotuvchi

Telzor Uchun

Ro'yxatga olish sanasi 21 Aprel 2025

9 Sotish

Xususiy hosilali differensial tenglamalar umumiy yechimi

Sotib olish
URGANCH   DAVLAT UNIVERSITETI
FIZIKA-MATEMATIKA FAKULTETI
AMALIY   MATEMATIKA VA   INFORMATIKA
YO’NALISHI   203   -GURUH   TALABASI   AVEZOV   DIYORBEK
MATEMATIK FIZIKA TENGLAMALARI FANIDAN
MAVZU:   XUSUSIY   HOSILALI   DIFFERENSIAL
TENGLAMALAR UMUMIY YECHIMI 
  Topshirdi:         ___________________
  Qabul qildi:            Yakubov Hamdam
                                                        Urganch  2021.
Ur g	a n	c h   D	a v	lat   Un	i v	er s	iteti  	Fi z	i ka	-
1KURS ISHI Matemati k	a  	fa ku	lteti   M	atemati k	a   y o	’ na	lis h	i
20 3	
-   gu	r uh  	tala b	a s	i   Avezov Diyorbekn	i ng	
“
M	atemati k  	fizi k	a  	te ng	lamala	ri”  	fa n	i dan  
“	
Xususiy   hosilali   differensial   tenglamalar
umumiy yechimi	 ”
 ma v	z us	i d	a g	i   ku	rs  	is h	i ga
TA	
Q R I Z
Avezov Diyorning   k	
ur s  	i sh	i  “Xususiy hosilali differensial tenglamalar umumiy 	
yechimi
” 	m avzu	si ni   o‘rg	a ni	s hg	a   b	a g‘i	s h	la ng	a n.
T	
a l	a b	a   Avezov Diyorbekn	i ng   ku	r s  	i sh	i  	reja  	a sos	i d	a  	a d	a b	i y	otl a	r dan
foyda	
l an i lg	a n   xo l d	a   t	a h l il   q	ili n	i b  	c h	i q	il g	a n   v	a   g	ra	m	mat	i k   x	at o	lar s	iz ,   yuq o	ri	
s
av	i yada   yo	z i l g	a n.   I	s h   y	a kun	i d	a  	m u	allif  	t o	m on	i d	a n  	a n	i q   xu	l os	alar   k	e ltiril gan
bo‘	
li b, ul	a r olib bo r ilg	a n 	a niq 	ta h	lillar  n	atija s	i d	ir .
M	
az kur   k u r	s   i	s hid	a   y	ana  	ma v	z ug	a   do	ir  	mi so	llar   k	eltiril g	a n   bo	’li b	,   k u	rs  	
is
h	i n	i   b	a ja r i	s hd	a   t	a la b	a   Avezov Diyorbekn	i ng   n	aza	ri y  	ta dq	i qo	tlar   o	li b  
b o	
ris hda qob	ili y	a t g	a  	e g	a  	e k	a n l igini   ko‘	r s	at d	i   v	a   shun	i ng   u	c hun   un	i ng  	i sh	i n	i  “    	”  
bahoga 	
l oy	i q d	e b o ‘ yl	a ym	a
I	
l m iy   r	a hb	a r:	Yakubov Hamdam 
2                                   Ur g	a n	c h   D	a v	lat   Un	i v	er s	iteti
F	
i zi ka	- M	atemati k	a 	fa ku	ltet   M	ate ma	ti ka
yo	
’ n	ali sh	i   20 3	-   g u	r uh  	tala b	a s	i   Avezov
Diyorbek  	
“ M	atemat	i k          	fi z	i ka  	te ng	lama	lari”	
fa
n	i d	a n  	“Xususiy   hosilali   differensial	
tenglamalar   umumiy   yechimi
”  	ma v	z us	i d	a g	i
ku	
r s 	i sh	i g	a	
                                                    T
AQR	IZ	
Ta
q	riz g	a  	ta qd	im   e	t il gan  	tala b	a
  Avezov   Diyorbek n	
i n	g  	k ur	s  	is h	i   34   b e t,   k	i rish  	q i	sm i,  	reja  	as o	si d	a
yo	
zil g	an,   x u	losa  	va   10  	ta  	a d	a b	i y	ot  	va  	i n	t erne	t  	sa yt	la r	idan  	fo y	dala n	il g	a n	
a
d	a b	i yo	tlar  	ro‘ yx	at i d	a n  	ta r	ki b  	to p	ga n   b	o‘l	i b	,  	“Xususiy   hosilali   differensial	
tenglamalar umumiy yechimi
”  	m	avz u	si n	i  o‘ rga n	is h	ga  b	ag‘is h	la n	ga n .
Avezov Diyorbek 	
k ur	s  is h	i  “Xususiy hosilali differensial tenglamalar umumiy 	
yechimi	”
  a	d a	bi yo	tlar  	as o	si d	a  ta h	lil   q	ili b 	c h	i q	ilga n .
Ta	
q ri	z g	a  	ta qd	im   q	ili ng	a n     Avezov Diyorbek n	i n	g  	k u r	s  is h	i n	i   y	ak un	la n	ga n  	i sh  	
d
e	b , 	m	u all	i f n	i n g 	is h	i n	i   “_ _ __ _ ”  b	a h	oga  	lo y	i q deb 	o‘ y	la y	ma n.
Ta	
q ri	z ch	i :	__ ___	_ __ _	_ __ _	_ ___	_ __
3 MAVZU:   ORTONORMAN   SISTEMALAR   VA   UMUMIY   FURE
QATORI .
REJA:
I. KIRISH.
II. ASOSIY QISM:
1.  Xususiy hosilali differensial tenglamaning xarakteristikasi
haqida tushuncha
2.  Xususiy hosilali differensial tenglamalar sistemasining
tipini aniqlash
3.  Ikki o`zgaruvchili ikkinchi tartibli xususiy hosilali
differensial tenglamalarning umumiy yechimini topishga
doir misollar
III. XULOSA.
IV. FOYDALANILGAN ADABIYOTLAR.
4                                      Kirish 
Ma`lumki, tabiiy fanlarning har xil sohalarida uchraydigan
ko`pgina jarayonlarni o`rganishda xususiy hosilali differensial
tenglama yoki xususiy hosilali differensial tenglamalar 
sistemasini
oldindan berilgan boshlang`ich va chegaraviy shartlarda yechish
masalalarini o`rganishga duch kelinadi. Bunday jarayonni 
ifodalavchi
matematik masalalar ko`pgina umumiylikka ega bo`lib, 
matematik
fizika tenglamalarining predmetini tashkil etadi. Matematik 
fizika
tenglamalari matematikaning asosiy fundamental va tadbiqiy
bo`limlaridan bo`lib, u bakalavryatning matematika, mexanika, 
amaliy
matematika va informatika kabi yo`nalishlari o`quv rejasidagi
umumkasbiy fanlardan biri hisoblanadi. Xususiy hosilali 
differensial
tenglama yoki xususiy hosilali differensial tenglamalar 
sistemasini
5 o`rganish uchun ularni sinflarga ajratish maqsadga muavfiqdir.
Uslubiy qo’llanmada xususiy hosilali differensial
tenglamalarning va differensial tenglamalar sistemasining
klassifikatsiyasi masalasi, hamda ikkinchi tartibli xususiy 
hosilali
differensial tenglamalarning umumiy yechimini topish usullari 
bayon
etilgan.
Ushbu uslubiy qo’llanma universitetlarning “Amaliy matematika
va informatika” yo’nalishlari bo’yicha bakalavrlar 
tayyorlaydigan
fakultet talabalari uchun mo’ljallangan bo’lib, shu yo’nalishning
namunaviy dasturida kiritilgan “Matematik fizika tenglamalari” 
fani
rejasiga asosan yozilgan
6 1
n
 ...
  
 
n

  
u1   -   § .   X U SUSIY HO S ILALI   D I FF E R E N SIAL
TEN G L AM A NING  X A R AKTE R IS T IK A SI   H A QI D A
T U SH U NC HA
   –   o r q a l i   x   , x
2 , . . . , x
n ,   n      2 ,   ortog o na l   d e kart  
k o o r di nata l i x   n u q ta l a r n i ng  	n   –   o’ l c ha m l i   R n  
e v k l i d   f a z o s id a n  
o l i n g a n   s o h a n i
b elg i l a y mi z .
 – so ha d a n ol i n g a n	
x n u q t a v a	
1 ,  	
2 ,   .. . ,	
n   ,
	
  
j      k ,   k  
   0 , . .. , m ,   m  
 1 , m a n fi y mas
b u t u n i n d e ks l i 
j  1
p
12
  . . .	n h a qi q iy   o ’ zg ar u vc hi l i
F   x , .. . ,   p , .. .	
1	2	n 
h a qiqi y   q i y mat l i   f u n ks i y a   b er i lg an   b o’ l i b ,   h e c h   b o’ l m a g a n d a
 F
   p	
12
. . .	
n ,   b u n da
	
  
j      m , h o si l a l a r d an   bi r o rta s i   n o l d a n 
j  1
m
7 1
1 
  
u

1
n
nf a r q l i   b o’ l s i n .   B u   y e r d a
p12
  . . .	n
    
 x	1  x
2	2  
  x
n  	n        d e b   o l a m i z .
k
F
 x , . .. ,
 x	
1 .. .  
 x
n	n   , . . .
      0 ( 1 )
s h a klda g i        t e n g l i k         u ( x )      u ( x   , x
2 , . . . , x
n ),   x  
n o ma ’l um f un gs i y a g a   n i s b a t a n  	
m	 ta r t i b l i   x u s u s i y   h o s i l a l i   d i f f e r e n s i a l
t e n gl ama
d e y i l ad i   v a   b u   t e ng l ik n i ng   c h a p   to m o n i   e sa,  	
m	 ta r ti b l i  
x u s u s i y   h o si l a l i   d i ff e r e n s ia l  o p er ator   d e y i lad i .
   so had a   a niql a ngan u ( x )   h aq iqi y   qi y mat l i
f unk s i y a   v a   u n in g   ( 1 )   t e n g l ama d a   q at na s h g a n   b arc h a   x u s u s iy
h o si l a l a r i   u zl u k s i z  b o ’ l i b ,   b u   t e n g l ama n i   a y ni y atga   a y l a n t i r s a ,   u
h o l d a   shu   f un k s i y a g a r e g ul y ar   y e c hi m   d e y i l a di .
A g a r F f unk s i y a p	
12
. . .  	n
  , b u n da	
   
	
  
j  
   k , 
j  1
k      0 , . .. , m   b a r c ha   o’ z g aruvc h i l ar g a   ni s b a t a n   c hi zi q l i  
f u nk s i y a  b o ’ l sa ,   u   h o l d a   ( 1 )   t e n g l ama g a   c hi ziq l i   t e ng l ama   d e b  
ata l a d i .   A g a r   F
f u n k s i y a p	
12
. . .  	n
  ,   bu n d a	
   
	
  
j      m  
o’ z g ar u v c hi g a g i n a 
j  1
n i s b a t a n   ch i z i q l i   b o’ l sa,   u   h ol d a   ( 1 )   t e n g l ama g a   k v a z i c h i z i q l i
t e ng l ama   d e b a ta l a d i .
8 	
l	
		

  
pLu      f   ( x ) c hi z i q l i   t е ng l ama   u n ing   o’ ng   t o m o ni d a g i f  
( x )  f u n k s i y a n in g   b a r c ha
x 	
   u ch u n   n olg a   t е n g   y o ki   a y nan  
n ol d a n  f a r q l i   b o’ l i s h ligig a   q a r a b   bir   j i n s l i   y ok i   bi r   j i ns l i  
b o ’ l ma g a n   t е n gl a m a  d е b   a t a l a d i .
Os o n g i na   k o ’ r s at i s h   m u m k in k i ,   a g a r   u ( x )   v a   v ( x )  
f u nk s i y a l ar  b i r   j i n s l i   b o’ l m a g an Lu      f   ( x )   c h i z i q l i  
t е ng l ama n i n g   y е c h i m l a r i  b o ’ l sa ,   u   h ol d a   u l a r n i n g   a y i rmasi   w ( x )  
 u ( x )  v ( x )   esa  	
L w     	0   b i r   j i ns l i   t е ng l am a n i n g   y е c hi mi  
bo’ l ad i .   B u n d a n   t as h q a r i ,   a g a r  u
k   ( x ),   k    1 , .. . , l       
fu nk s i y a l ar   bi r   j i n s l i   t е ng l am a ni n g   y е c hi m l a r i
b o ’ l sa ,   u   h o l d a  	
u
 
 
   c
k  	u k  	( x	),   b u n da  
c
k –   ha qi qi y  
o’ zg a r mas l a r , 
k  1
h am   s h u  t е ng l am a n i ng  y е c h i mi   b o’ l a d i .
( 1 )   t е n g l ama n in g   t ip i	
K
	
1	,..., n      		
 F	

   m	1 . . .  	n	
 1  	1... n  	n
x a r a kt е r i s t i k   f o rma   o r qa l i   ani q l a n ad i.
  	
a  	( x	)D		u  
   f  	( x	) ( 2)  	

   m
t е ng l ama  	
m   –   t ar t i b l i x u s u s iy   h o sila l i   c h i z i q li   d i ff е r е ns i al
9 u
1
1 
		
1
1t е ng l ama ni ng u m u m i y       s h a k l i , b u n da	
      (	
1 ,	
2 , . . . ,	
n )
– m u l t i in d е k s ,  	
  
j  	  	0 ,   j    1 ,   n ,   b u n d a n   t a s h q a ri  	  
j   –   b u t u n
s o n l ar,	

  	
1   	
2    .. . 	
n   m u l ti in d е ks   m o du l i ,  	D		u     	

x  	

...  	

x
n	n   b o ’ l s i n . D	
  
		 a l mas h t iri s h  
or q a l i   ( 2 ) t е ng l ama n i n g
  	
a  	( x	)	  
s i m vol i n i  h o s il  q i l ami z ,   b u n da  		  
	
1  	1 2  	2	
...
n  	n  .
 
   m
  	
a  	( x	)	 f o rma g a ( 2 ) t е ng l ama n i n g   b o s h   s i m vol i   y o k i 	

   m
x a r a kt е r i s t i k  k o ’ p h a d i   d е b  a ta la di .
x 	
 t a y i n l a n ga n n u qta b o ’ l sin. No l d a n fa r q l i	

     (	
1 ,	
2 , . . . ,	
n )  
   0   v е k t o r   u c h u n  
  	a  	( x	)	  
  	
0
  b o’ l s a , 	
   m
u  h o l da   b u   v е k t o r  x a r a k t е r i s t i k   y o ’ na l ish  d е b  a ta l a di.
F ( x   , x
2 , . .. , x
n )      0   for m u l a   b i l an   b е r i lg an   g i p е r s i r t  
u ch un   h ar  b i r   n u q t a  x ar a kt е r is t ik  y o’ n a l i s h g a   e g a   b o ’ l s a ,   y a' n i
 F ( x   , x
2 , ... , x
n )  
 0
10 1 
 F  F


 


 
1
 F    F  F

n n
 x    x
1
n n
 x      x
  
m a	
  
( x )   

x   	
1  
.. .
   
x
n   	n  
  
0 ,   g r a d F     
0 ( 3)
b o ’ l sa ,   u   h ol d a   x ar a kt е r i s t i k   s i rt   d е b   a t a l a d i .   B u   x ara k t е r is t i k a
t е ng l amas i d i r ,   b u n da	
grad
  F     
  	
 x  	
,
 x
2  	
,...,
 x
n   	
.
I kki n c h i   t a r t i b l i   k va z i c hi z i q l i   ( b ar c h a   y u q o ri   t ar t i b l i
h o s i l a l a rg a  n i s b a t a n   ch i z i q l i) u zl u k s i z	
a
i j	(x)
ko e f fits i е n t l i t е ng l ama n i  q ara y m i z :
  a
i   j   ( x )      2
u  
 Ф ( x , u , gra d u )
   0 .
i j
x      ( x   , x
2 , .. . , x
n ),   n      2 o ’ z g ar u vc h i l i   F ( x )  
f u n k s i y a   C 1 
s in f d a n   o l i n g a n  b o ’ l i b ,   F ( x )    0        s i r t d a gr ad  
F ( x )      0   v a
  a
i   j   ( x )    F  
    F  
   0 ( 5 )
i
 1   j  1 i j
11 2
2
n


 F  F

 t е k i sl i k l ar  o i l as i d a n  i borat   b o’ l a d i.
 u      f
b o ’ l s i n .   U   h o l d a F ( x )    0 e sa,   ( 4 )   k va z ich i zi q l i   d i f f е r е n s i a l
t е ng l ama ni ng   x a r a k t е r i s t i k   s ir ti   d е b ,   ( 5 )   t е ng l ama   e sa   x ar a kt е r is t ik
t е n g l amasi   d е b   a y ti l a d i .  
n     	2   u c h u n   x a r a kt е r i s t i k   s i r t i
x ar a kt е r is ti k c h i z i q  d е b a t a l a d i.	

t	
u  
  	
a 2
	u
t o’ l qi n  t a r q a l i s h  t е n gl ama s i   u c h un   x ara k t е r i s t i k   t е ng l ama
F     	
0  
d a
s h a k lg a   eg a d i r . 2 2
  	
 t  
   	
a 2  
i 
1   	
 x
i  
     	
0
Uc h i ( x
0 , t
0 ) n uq t a d a   b o’ l g an   x ara kt е r is t i k   k o n us   d е b  
a t a l u v c h i	
a2(
t  	 t	0)2  	
 	x  	  	x0
 	
2  	

 	
0
  s i r t   x a r a k t е r i s t i k   s i rt   b o’ l a d i.
12 
u
 xt     	
a 2
	u      f
i ss i qlik  o ’t k a z uv c h a n lik t е ng l ama s i   u ch un   x ar a kt е r is t i k   t е ng l ama
F     	
0   d a 	a 2   n  
  	
 F  
 2  
  	
0
i 
1  i   
s h a k lg a   eg a d i r .   U ni n g 
x ar a kt е r is t i k a l a r i   os o n g i na  
k o ’ r i n a d i ki ,   t      C
13 
 F

P u a sson  t е n g l a m asi   u ch u n  x ar a k t е r i s t i k   t е n gl ama
n 2
F     0   д а
i 
1   	
 x
i        	
0
s h a k lg a   eg a di r.   Bu n dan   F     	
0 да g r a d  F      0   e k a n l i g i   k е l ib
c h i q a d i ,  b u   e sa   m u m k i n  e m as,   y a' n i   x a r a k t е r i s t i k s i r t g a   e g a   e m as.
E n d i   x u sus iy   h os i l a l i   d i ff er e n s ia l   t e n g l ama n i n g  ta r ti bini   v a   u n in g
c h i z i q l i   di f f e r e n s i a l   t e ng l ama   e k a n l i g i n i   a ni q l a s hga   d o i r   miso ll ar
k el t i r a m i z :
1 – m i s o l.	
s i	n(u
x  	u y	)s i	n	u
x  	cosu y  		s i	n	u
y  	cosu x  	  	0
t e ng l ama   x u s u s i y   h o s i l a l i   diff e re ns ia l   t e ng l ama   b o’ l a di m i?
Y ec h i s h:

F 
 s i n ( u
x    u
y )
 s i
n u
x   c o s u
y    si n u
y   c o s u
x   
 u
x                                                   u
x	

 	cos(u
x  	u y	)cosu x  	cosu y  	s i	n	u
y  	s i	n	u
x  		

 	cosu
x  	cosu y  		s i	n	u
y  	s i	n	u
x  	cosu x  	cosu y  	s i	n	u
y  	s i	n	u
x  	  	0   .
X u d d i   sh u n da y ,  F
 u
y    0 e kan l i gi n i   k o’rsati s h   m u m k i n.   F
f u n k s i y a d a n   x u s u s i y   h os i l a l ar   b o ’ y i c h a   ol i n g a n   h os i l a l ar   n o l g a   t e ng
14 3

3
2

u2	2	
2	2	2	2	22
3e ka n .   D e m a k ,   b e r i lg a n   t e ng l ama   x u s u s iy   h o s i l a l i   di ff e r e n s i al   t e n gl ama
b o ` l mas   e k a n .
2– m is o l.	
u
x x  		u y y  	 	u
x x  	u yy   	
2  	

 	0 t e ng l ama   x us us iy  
h o si l a l i   d i ff e r e n s ia l   t e n gl a m a   b o’ l ad i mi?
Y ec h i s h:   A vv al   b er i lg a n   t e n g l am a ni   s o dda l a s h ti r i b   ol a y l i k . 	
F  	

 	u
x x  		u yy  	 	u
xx  	u y y   	
2  	

 	u
x x  	u yy  	u xx  	
	
2u
x x	u yy   	u
yy     	2u
x x	u y y . En di   e s a ,   x u s u s i y   h os i l a l ar  b o’ y ic h a 
h o si l a l a r n i   h i s o b l a y mi z :	

F
u
x x   	
2u
yy     	
0
,  F
 u
yy    2 u
xx      0 .
D e ma k ,   b e r i l g a n  t e ng l ama   2 – t a r t i b l i   x u s u s iy   h os i l a l i   diff e re ns ia l
t e ng l ama   ek a n .
3– m is o l. c	
os 2  	u
xx   	s i	n 2  	u
x x     	4u
x   	2u
y   	u     	0  
t e ng l ama ni ng t a r tib i n i   a n i q l a n g.
Y ec h i s h:	

 c	os 2  	u
x x   	s i	n 2  	u
xx     	4u
x   	2u
y   	u
  	
u
x x
    2 c o s u
xx   s i n u
x x      2 si n u
x x   c o s u
x x      0 
15 
u

u	
 c	os 2  	u
xx   	s i	n 2  	u
x x     	4u
x   	2u
y   	u

	
12u
x     	0
x
D e ma k ,   b e r i l g a n  t e ng l ama   1 – t a r t i b l i   x u s u s iy   h o sila l i   d i ff e r e n s ia l 
t e ng l ama   ek a n .
4– m is o l.	
x 2	u
x x  	  	xu
x y  		sin  	y		u
x  	  	y 2	u
 	  	0  
t e ng l ama   x u s u s i y   h o s i l a l i   c h i zi q l i   d i f f e r e n s i al   t e ng l ama   b o’ l a di m i?
Y ec h i s h:	

 x 2	u
x x      x	u
xy   	s i	n   y		u
x      y 2	u

  
x 2
  	
0
  xx
b o ` l g a n i   u c h un   b er i lg an   t e n g l ama   2 –ta r t i b l i d ir.   Ha m d a   t e n g l ama 
Lu      f k o ` r i ni s h i d a   b o ` l i b ,   b u   e r d a	
Lu
     x 2	u
x x      x	u
xy   	s i	n   y		u
x      y 2	u
o p e r ator n o ma ’ l u m f u n k s i y a v a un in g h o si l a l a r i 	
u
x x	,  	u
x y	,  	u
x  	,  	u   l a rg a   nisba t an  c hi zi q l i d i r,   c hu n ki	
L	(	u
    	 v	)      x 2	(	u
    	 v	)
xx      x	(	u     	 v	)
xy   	
	sin
 	y		(	u			v)x
 	  	y2(  	u			v)	
		x2uxx
 			xuxy  			sin  	y		ux
 		y2u			x2vxx  	  			vxy
 			sin	y		vx
 		y2v  			L	u			L	v
16 2
2v a   t e n gl am a n i n g   o` n g   tom o n if   ( x )      0 d i r .   S h u n in g   u c h un   2 –  
ta r t i b l i   x u s us i y   h o s i l a l i   bi r  j i n s l i   c h i z i q l i  di ff er e n sia l   t e n g l a m a   b o’ l a di .
5– m is o l. x	
u
x x   	( x      y	)u
x y   	5 y		u
x      y 2	u
  	s i	n( x      y	)  
  	
0   t e ng l ama   x u s u s i y   h o s i l a l i   c h i zi q l i   d i f f e r e n s i al   t e ng l ama  
b o’ l a di m i?
Y ec h i s h:   B er i l g a n   t e ng l a m a   c hi z i q l i   d i f f e r e n s i a l   t e ng l ama   b o ’ l a
ol m a y di ,   c h u n k i  	
Lu      x	u
x x   	( x      y	)u
xy   	5 y		u
x      y 2	u
o p e r at o r  u
x x   g a   n i s b a t a n   b i r inc h i   ta r ti b l i   ( c hi zi q l i)   e mas.
6– m is o l.
 sin ( x    y )    x 2  
   0
x	
u
x x y      y 2	u
yy y   	5 y		u
x y    l	n   y		u
x      y 2	u

t e ng l ama   x us u s i y   h os i l a l i   c h i z i q l i   d i f f e r e n s i a l
t e ng l ama   b o’ l a di m i?
Y ec h i s h:   B e r i lg an   t e ng l ama   b i r   j i n s l i   b o’ l m a g an   c h i z i q l i
d i ff e r e ns i al   t e ng l a m a   b o ’ l a d i,  c h u n k i	
Lu
     x	u
x x y      y 2	u
y y y   	5 y		u
x y    l	n   y		u
x      y 2	u
  o p e r ator	
u	xxy,
 	u	yy	y,  	u	xy,  	u	x,  	u l ar g a   ni sbat a n   b i r in c h i
d ar a ja l i   d i ff e r e n s i al   i f o d a   v a f   ( x )       sin ( x    y )    x 2  
   0 .
17 18 7– m is o l.  u
x xy  	 t	gy		u
yy  		7	y		u x y	u y y  	  	y		u
x  	  	yu  	  	xy  	  	0
t e ng l ama   x u s u s i y   h o s i l a l i   c h i zi q l i   d i f f e r e n s i al   t e ng l ama   b o’ l a di m i?
Y ec h i s h:   B e r i lg a n   t e n g l ama   c h i zi q l i   di f f e r e n s i al   t e n gl ama   b o’ l a 
ol m a y di ,   ch u n ki	
Lu
 	  	u
x xy  	 t	gy		u
yy  		7	y		u x y	u y y  	  	y		u
x  	  	yu
o p e r ator	
u	xy,  	u	yy l ar g a   n i s b a t an   bir i n ch i   d ara j a l i   di ff e r e n s ia l
i f o d a   e m a s .   A m mo   u sh b u   t e ng l ama   kv a z ic h i z i q l i   di f f e r e n s i a l   t e ng l a m a
b o ’ l a d i ,   ch u n k i	
Lu
 	  	u
x xy  	 t	gy		u
yy  		7	y		u x y	u y y  	  	y		u
x  	  	yu
o p e r ator   y u q o ri   t a r t i b l i   h o s i l a	
u	xxy g a   nis b a t an   b i r i n c h i   d a r a ja l i 
d i ff e r e ns i al   if o d a   b o’ l a d i .
2.   X U SUSIY HO S ILALI   D I FF E R E N SIAL
TEN G L A M A LA R  SI S TEMASIN I N G TI P INI   AN IQL A SH
Bi zg a u 1
,   u
2 ,   . . .,   u
N n o ma ` l u m   f un k s i y a l ar   q a t n a s h g a n   h a r
b i ri m   –   t a r t i b l i   q u y i d a gi   N   ta   x u s u s iy   h os i l a l a l i   d i ff e r e ns ia l
t e n g l ama l ar s i s t e m asi   b e r i l g a n   b o ’ l sin:
19  1
211 ii
iiii
2 n 2 n1 N
11 ii
iiii
2 n 2 n1 N
ii
12 n 12 n1 N




1 iii
2 nj
2
1 nii
i	
1	
1	
1	
1	
1	1	
1	1	
1
1
1 1
2
2
1 2
1
2 1
N
N
N1A 



 




 

 n
F  
 x , u	
1 , u	2, , ... , u	N	, , ...,  p	x1x2
 	...xn   , .. . p	x1x2
 	...xn  
  0  
 F   x , u	
1 , u	2, , ... , u	N	, , ...,   p	x1x2
 	...xn   , .. . p	x1x2	
...xn
  
0

............. . ......................... . ....... . ......................... . ... 
 F
N
   x , u	1 , u	2, , ... , u	N	, , ...,  p	x1xi2...xin
  , .. . p	x1xi2...xin
 
  0 ,
b u  y e r d a p
x	
1 x	2
.. . x	
n  i
u
j
 x	
1  x
2   . . .  x
n ,   0    i      m ,   0    j     
N .
Us h bu   t e n g l a m a l ar   s i s t e m a s i n i n g   t i p i n i   a n i q l a s h   u c hun   u n i n g
x a r a kt e r i s t i k   f o rmas i n i   t u z a m i z .   B u n i n g   u c h u n   b i z g a   q u y i d a gi
k v a d r a t ik m a trit s a l ar  z a r ur   b o ’ l a d i :	

F
  	
p
i i	2 .. . i	n
 
 F
i i	
2 . . . i	n      	
p
i i	2 . . . i	n	
.
    	 F
N
  	
p
i i	2 ..
. i	n	
 F 	p
i  
i	
2 . . . i	n	

F
2 	p i
i	
2 . . . i	n	
.
  F
N
p
i  
i
2 . . . i	n	



	
 F

p
i i	2 . . . i	n
  	

F
2
p
i i	2 . . . i	n
 

,	
.


F
N
p
i i	2 . . . i	n
    i
k     	
m
. 
k  1
20 21 1
1
1   2 n i




1A n
2
1AB u   m a trit s a l ar d an   fo y d a l a n ib,
1 ,  	
2 ,   .. .,  	
n h aq i q i y   s k a l y a r
p aram e tr l ar g a   n i s b a t a n   u s h bu   N	
m   –   t a r t i b l i   x a r a s t e r i s t i k   for ma n i
t u z a m i z :
K  (	

1 ,	
2   , 
,	
n   )  
   d e t
  
   A	i
 i   . . .	i  		
i  
	

n	n  
 . 
 |	i |
 m

Y uq or i da g i   s is t e m a n i n g   t i p in i   a n iq l a sh   u s h bu   x ar a k t r i s t ik   f or ma ni ng
s h a k l i g a   qar a b,  	
m   –   t a r t i b l i   b i t ta   t e n gl ama   q a r a l g a n i   s i ngari   t i p l a r g a
b o ` l i n a d i .
1– m is o l.  2 u
x    4 v
x    3 u
y    8 v
y    u    0 
 3 u
x    2 v
x    6 u
y    3 v
y    2 u  
 0 t e n g l ama l ar
s i s t e m a s ini n g   t ip i n i   an i q l a n g.
Y ec h i s h :   A vv a l am b or ,   b i z	
ii2
. . .	in
  ,  i
k     	m
 
k  1
matr i ts a l a r n i   t u z a m i z .   B i zni ng mis old a   N = 2 ,   n = 2,  
 i
k   	
1 ,  
u
1     
u , 
k  1
u
2      v   b o’ l g ani  u ch un	
ii2
. . .	in
  ma t r it s a l ar  q u y i d a g i c h a   b o ’ l a d i :
22 1
2
2A 
1

u
 

 

 ,
1
1
2A 
1

u
 

 

 1
1
1
1   2 n i
2		
	
22
 



 

 8


  
 4 
 9 
 1 2   
48	

3 
  
6 
 2 
 3 



  
 F
1 0     
    F x 

 u
x  F
 v
x     
 2   
4

 F     
 3    2

 v
x    b u   e r d a   i    1 ,   i
2      0 ,
    F
0 1     
  
 F y
    u
y  F
 v
y     
 3
8
    F
2     
 6
3
   v
y  
 ,   b u   e r da   i      0   ,   i
2    1 .
E n d i   e sa          
K   (	

1 ,	
2   , 
,	
n   )  
   d e t
  
   A	i
 i   . . .	i  		
i  
	

n	n  

 |	
i |
 m                                        

x ara k t e r i s t i k  k o’p h a dni   t u z a m i z :	
K	(
 	1,2)  	  	
det
3	
4		
3
 	2	
 	
1	
6	
3	
2  	

 	
	

 	det
2  	1
 	
	32	
	1	2	
	8
 	1
 	392  	.	
4  	1
 		82  		2	2	2	2	1	2	1	2	
1	2
B 2  
   AC      0 2  
 8  (  3 9)      3 1 2      0 .   D e ma k ,   b er i lg a n  
t e n g l am a l ar s i s t e m a s i   t e k i s li k n i ng  h am m a  n u q t a l a r id a  gi p er b o l ik  t i p d a  
b o` l a d i .
2– m is o l.  u
x    u
y    v
y    v
z      x y u     
0 
 v
x    u
y    v
y    u
z    2 u     
0 t e n g l ama l ar
s i s t e m a s ini n g   t ip i n i   an i q l a n g.
23 Y ec h i s h :   A v v a l am b or ,  bi z
24 1A n
3
1A
1
2
2A 
1

u
 

 0



 1
1
2A 
1

u
 

 1



 1
1
2 2
A 
1

u
 

 1


  1
1
1
1   2 n i
ii2. . .	in
  ,  i
k     	m
 
k  1
matr i ts a l a r n i   t u z a m i z .   B i zni ng mis old a   N = 2 ,   n = 3,  
 i
k   	
1 ,  
u
1     
u , 
k  1
u
2      v   b o’ l g ani  u ch un	
ii2
. . .	in
  ma t r it s a l ar  q u y i d a g i c h a   b o ’ l a d i :
  
 F
1 0 0     
    F x
    u
x  F
 v
x   
 1    F   
 0   v
x    1
   ,   b u   er da  
i  
 1 ,   i
2      0   ,   i
3      0   ,
    F
0 10   

 F y 
    u
y
  
 F
0 01     
    F z 

 u
z  F
 v
y     

1    F
2   
  1   v
y  

 F
 v
z     
   0
 F     
   1
 v
z    
1
   ,   b u  e r d a   i      0 ,   i
2    1 ,   i
3      0 ,
0
   ,   b u   e r da   i      0 ,   i
2      0 ,   i
3    1 .
E n d i   e sa          
K   (	

1 ,	
2   , 
,	
n   )  
   d e t
  
   A	i
 i   . . .	i  		
i  
	

n	n  

 |	
i |
 m                                        

x ara k t e r i s t i k  k o’p h a dni   t u z a m i z :
25 1 1
1 1
1 1
2 2 

 
 

 
2
2
F 22 


  






 



.	
	
						
		 


 

 

 

     


   


22




1A n
2
1AK (   1
,	

2 ,	
3 )   

  
 F    
d e t 
   
u x
     u
x 
F  
     F

v
x                  
 u
y   F      1
  
 F
 v
x  
   
 u
y  F  

   
F   v
y  


u
z    F              
 F
2   v
y  

    u
z  F  
 
 v
z

 F      3 
 v
z   


 1   0
         
   1        1
         
 0
1
      
    0   1
   1      

 1  
 1
   2       
 1
0
   3  

  
de t   
1  	

2
 2 3	 2   	
3   
2 2 2 2 2 2
1 2 2 3 1 3
1 2
X a r a k t e r i s t i k   f or m a ning   K (  
1 ,	

2 ,	
3 )     
1   	
3 k a n o n i k   s h a k l i d a
i k k i n c h i   k o e ff it s i e nt   n o l g a   t e n g di r .   S h un ga  k o`ra,   b er i lg an   t e n gl am a l ar
s i s t e m a s i   fa z o n i n g   ham m a  n u q ta l a r i d a   par a bo l ik  t ip d a   b o ` l a d i .
3 - m is ol .  u
x    u
y    v
y    u     0 
 v
x    2 u
y    v
y      x u     
0 t e n g l ama l ar   s i s t e m as i n i n g
t i pini   a n i q l a n g .
Y ec h i s h :   A vv a l am b or ,   b i z	
ii2
. . .	in
  ,  i
k     	m
 
k  1
matr i ts a l a r n i   t u z a m i z .   B i zni ng mis old a   N = 2 ,   n = 2,  
 i
k   	
1 ,  
u
1     
u , 
k  1
u
2      v   b o’ l g ani  u ch un	
ii2
. . .	in
  ma t r it s a l ar q u y i d a g i c h a   b o’ l a d i:
26 27 1
2
2A 
1

u
 

 0



 1
1
2A 
1

u
 

 

 1
1
1
1   2 n i
0	
.	

1	
					
		
	 

 



	
		
  
2		
	
 
	

22
  
 F
1 0     
    F x 

 u
x  F
 v
x   
 1    F   
 0   v
x    1
   ,   bu   e r d a  
i  
 1 ,   i
2      0 ,
  
 F
0 1     
  
 F y
  u
y  F
 v
y     
   1 1

 F
2     
  2    1

 v
y  
 ,   b u   e r da   i      0   ,   i
2    1 .
E n d i   e sa          
K   (	

1 ,	
2   , 
,	
n   )  
   d e t
  
   A	i
 i   . . .	i  		
i  
	

n	n  

 |	
i |
 m                                        

x ara k t e r i s t i k  k o’p h a dni   t u z a m i z :	
K	
(
 	1,2)  	  	
det


1	
0	          	  	1	
1
 	
       	  	1	
 	
1	
2
 	1
 	
2  	
	

 	det

 	
22
2	
2		2	2	2	2	2	1	2	2	1	2	
1	2
Xar a k t e r is t i k   f o rma ni ng K (  
1 ,	

2 )     
1   	
2 k a n o n i k   s h a kl i d a
i k k i a l a   k o e ff i t s i e n t   h a m   bi rga   t e ng d i r .   Sh un g a   k o`ra,   b er i lg an
t e n g l ama l ar   s i s t e masi   t e ki s l i k n i ng   h amma   n u q t a l a r i d a   e ll i p t i k   t i p d a
b o ` l a d i .
M u s t a q i l   y ec h ish   u c hun  m i sol l a r
28 Q uy i d a  be r i lg a n t en g l ama l ar   s is t e ma sin i ng  t i p in i   a n i ql an g :
29 

























8 . 1 .
8 . 2 .
8 . 3 .
8 . 4 .
8 . 5 .
8 . 6 .
8 . 7 .
8 . 8 .
8 . 9 .  u
x    v
x    u
y    v
y    u      0  
 2 u
x    v
x      4 u
y      2 v
y    u    
0   .
  u
x    u
y    v
x     xy      0 
 2 u
x    3 u
y    3 v
y    u      0
.
 u
x      2 u
y    3 v
x    v
y      x      0 
 3 u
x    3 u
y    3 v
y    3 v
x    u      0
.
 4 u
x    u
y    3 v
x     xu      0
 u
x    5 u
y      2 v
x    u si n x      0   .

4 u
x    5 u
y    3 v
x      x 2
u      0 
 2 u
x    5 u
y    v
y    u c o s x      0
.
 5 u
x    3 v
x    v
y      x 2
y     0 
 u
x      2 u
y    v
x    u sin   y    
0   .

1 0 u
x      2 v
x    u
y      x 2  
c o s   y     0
 4 u
x    3 u
y    5 v
x    v
y    4 x sin   y     0   .
 2 v
x    u
y    6 v
y      x 3
y     0
 u
x      2 u
y      2 v
x    3 v
y    3 x y 2  
   0   .
 6 u
x    2 u
y    3 v
x      4 v
y      x 4  
   y     0
30  3
u
x    2 u
y    8 v
y    u      y 2  
   0   .
31 x y x y



x x y


























 u    6 u    5 v    3 v      x    s i n u      0
8 . 1 0 .  
 3 u
y    5 v
x    v
y    u    c o s x      0   .

2 u    2 v    12 u    2 u      0
8 . 1 1 .  
 v
x      4 u
y    v
y      x y     0   .
8 . 1 2 .
8 . 1 3 .
8 . 1 4 .
8 . 1 5 .
8 . 1 6 .
8 . 1 7 .
8 . 1 8 .
8 . 1 9 .  2 u
x    7 u
y    v
x    2 u      0
 3 u
x    3 1 u
y    v
y    3 v
x    e y  
sin   x      0   .
 2 u
x    3 v
x    v
y    5 u      0 
 3 u
x    3 v
x    3 u
y      4 v
y     
0   .
 u
x    u
z    3 v
x    v
z      x      0 
 u
x    v
x    2 v
y    2 v
z    u      0   .
 v
x    u
z    2 v
z    5 u      0
 u
x    v
x    v
y    v
z      x u      0   .
 u
x    v
y      2 u
z    3 v
z    u      0 
 u
y      2 v
x    2 u
z    v
y      2 u     
0   .
 u
x    u
y      2 v
y    3 v
z    5 u  
0 
 u
x    v
x      2 u
z    v
z      4 u
   0   .
 u
x    2 u
y    v
y    v
z    6 xu      0 
 2 u
x    4 v
x      2 u
z    v
z      4 yu     
0   .
 u
x    v
y    v
z      2 xyu      0
 2 u
x      2 u
z    v
z      4 x
 u  
   0   .
32 33 
















8 . 2 0 .
8 . 2 1 .
8 . 2 2 .
8 . 2 3 .
8 . 2 4 .
8 . 2 5 .  2 u
x    u
y    v
z    u      0
 u
x    2 v
x      2 u
z      4 u    6 y     0   .
 u
y    2 v
y    v
z      x y    
0 
 u
x    v
x      2 u
z    v
z   
0   .
 u
x    u
y    v
x    2 v
z    5 u e x
 y  
   0
 u
x    v
y      2 u
z    v
z    3 u      0   .
 2 u
x    u
y    v
x    u     0
 v
y      2 u
z    v
z      2 u e x  
   0   .
 u
x    u
y    v
x    2 u
z    u    e y  
   0
 u
x    v
y      2 u
y    u
z    3 u      0   .u
x    v
x   	u
z   	u    e x y  
  	0	
u
x    v
x     	2u
y    v
z   	u e x y  
  	0  	.
3   .   IKKI   O ` Z G A R U V C HILI   I K K I N CHI  T AR T I BLI
X US U SIY H OS I L A L I   D I FFE R E N SI A L  T E N GL A M A L A R N I N G
U M U MIY  Y E C HI M I N I   TOPISH G A   D OIR MI S O L L A R
B u  p ara g raf d a   i k ki  o ` z g ar u v c h i l i  i k k i n c h i   ta r t i b l i   x u s u s iy   h o si l a l i
d i ff e r e ns i al   t e ng l a m a l a r n i n g   u m um i y   y e c hi m i n i t o p i s h ga   d oir
m i s o l l a r n i   qa ra y mi z .
1– m is o l.	
u
x y  	  	0   t e n g l a m a n i n g   u m u m i y  y ec h im i ni   t o p i ng.
34 2
1 1
C
Y ec h i s h:   u
x      v   d e b   b elg ilash   k i r i t am i z .   U   h o l d av
y  	  	0
t e n g l ama g a   e g a   b o’ l ami z .   U s h bu   t e ng l ama n i   y e c hi sh   u c hu n
u n i int e g r a ll a y miz   v a   v    C ( x )   t e n g l i k k a   e g a   b o’ l am i z .   T o pi lg an
i fo d a n i
k i r i ti lg a n   b elg i l as h g a   o l ib,   b or i b   qu y i b ,   u
x    C ( x )   t e n g l ama g a
eg a  b o ’ l am i z .           Bu   t e n g l am a ni   int egr a ll ab       u ( x , y )      f
( x )    g ( y )
u m u m i y   y e c h i m g a   eg a   b o’ l am i z ,   b u   y e r d a   f   ( x ) v a g ( x )
f u n k s i y a l ar  i x t i y or i y   di ff e r e sia l l an u vc h i   f u nk s i y ala r di r.
2– m i so l .  	
u
x x  	2u xy  	3u y y  	  	0   t e ng l a m a n i n g   u m u m i y  
y e c h i m i n i   t o p i ng.
Y ec hi s h :
A  1 ,   B       1 ,   C       3   ,         B 2  
   AC    1  1  (  3 )      4     
0  y uq or id a gi   t e n g l ama   g i p e r b o l i k   t i p d agi   t e n g l ama   ek a n .   En d i  
e sa  x a r a kt e r i s t i k t e m g l amas i ni   t u z am i z  v a   u n i   y e c ha m i z :
y
 2  

2 y


3   
0 ,  
y	
    	
2   	4 	12  
   	
1
  	2
,  
y 
   
3 ,
y


1
y      3 x  C   , y     x  C
2 , C    3 x    y , C
2      x      y ,
b u   er d a
1 ,   C
2 o ’ z g ar masl arni   m o s   ra v i sh da  	
   v a  	   l ar  
b i l a n a l mas h tir a m i z ,   y a` ni
	
      3 x    y  
	      x    y   .
U   h ol d a	
u   f u n k s i y a n i   m u r a k k a b   f u n k s i y a   d e b   q a r a b  	   v a  	
o ` z g ar u v c h i l ar	
x   v a y   o` z g ar u vc h i l arn i ng   chi z i q li   f un k s i y a l a r i
35 	
									
	
	
e kan l i gi n i   h i so b g a   o l i b   b i r inc h i   v a   ik k i n c h i   ta r t i b l i   x u s u siy   h os i l a l a r ni
h i s o b l a y mi z :	
u
x  		3u  		u   , 	u
y  		u  	u   ,	
u
x x  	  	9u
 		6u  		u   ,  	u
x y  		3u	
2u
 	u  	
  ,  	u
y y  		u  	2u  		u   .
To pi l g an   i f od a l a r n i	
u
x x  	2u xy  	3u y y  	  	0   t e n g l ama g a   o l i b   b o r ib
qu y a m i z .   N a t i j a d a
9 u  	

   6 u 	
   u  	
   2

 3
u  	
   2 u  	
   u  	
  3

 u  	
   2 u  	
   u  	

 
0   , 
yo k i	16u  	
 		0   ,	
u
 	
 		0
t e n g l ama g a   eg a   b o’ l ami z .   U s h b u   t e n g l ama n i n g   u m u miy   y e c hi mi
y uq or id a gi   1 - m is olg a   a s o s a n  q u y ida g i c h a   b o’ l a d i : 
u (	
 ,	 )      f   (	 )    g (   ) .
B u  e r da  	
   v a  	   o ` z g a r u v c h i l ar o`r ni ga   u l a rn i n g  	x   v a   y
o ` z g ar u v c h i l ar   or qa l i   i f od a l a r i n i  q u y i b ,
u ( x , y )      f   ( 3 x    y )    g ( x    y )  u m u miy  
y e c h i m g a   e g a   bo’ l ami z .
3 - m is ol .  	
u
x y  	2u x  	  	0   t e ng l am an in g   u m u miy   y e c h i m i n i 
t o p i n g .
36 Y ec h i s h:   u
x      v   d e b   b e l g i l ash   k i r i t a m i z .   U   h o l d a  v
y  	2v  	  	0
t e n g l ama g a   eg a   b o’ l am i z .   Us hb u   c hi z i q l i   t e n gl am a n i   y e c ha m i z   v a
v    C ( x )   e 2 y
t e n g l i kk a   e g a   b o’ l am i z .   To pi l g an   i f o da n i   k i r i t i l g a n
b elg i l as h g a   o l ib   b o r i b   q u y ib , u
x    C ( x ) e 2 y
t e n g l ama g a   e g a
b o ’ l am i z . B u c hi zi q l i b i r         j i n s l i t e n g l am a n i y e c h s a k ,
u ( x , y )      f   ( x ) e 2 y  
   g ( y )          u m u m iy   y e c hi m n i   h o s i l   q i l ami z ,
bu   y e r d a   f   ( x )             v a               g ( x )   f u nk s i y a l ar   i x t i y o r i y
d i ff e r e s i a ll a nu vc hi
f u n k s i y a l a r di r.
4 - m is ol .	
u
x y   	2u
x   	3u
y   	6u     	2 e x
 y
t e ng l am a n i ng 
u m u m i y   y e c h i m i n i   t o p i n g .
Y ec h i s h:  
U s h bu   t e n g l am a ni   y e c hi sh   u c h un   a v v al   t e n g l a m a d a gi
b i r in c h i   t a r t i b l i   x u s u s i y   xo s i l a l ar n i   y o` q o ta m i z .   Bu n i ng
u c h un
u ( x , y )      v ( x , y )  e	
 x
	 y
a l ma s h t iri s h   b a jara m i z ,   b u   y e r da gi	

  v a  	   o ` z g armas l a r n i   k e y in c ha li k   t a n l a y mi z .   Bi r i n c h i   v a
i k k i n ch i  ta r t i b l i   x u s u siy   h os i l a l ar n i   h i s o b l a y m i z :
u
x      v
x    e	
 x
	 y  
 v 	 e	 x
	 y 	u
y      v
y	

e	 x
	 y  
 v		 e	 x
	 y	
u
x y      v
xy  	 e	 x
	 y  
 v
x  		 e	 x
	 y  
 v
y  		 e	 x
	 y  
 v	
		 e	 x
	 y 
To pi l g an   i fo d a l ar n i	u
x y   	2u
x  
	
3u
y   	6u     	2 e x
 y
t e n g l ama g a
37 ol i b   b or i b   q u y a mi z .   N a t i j a d a
38 v
xy   e	 x
	 y  
 v
x  		 e	 x
	 y  
 v
y  		 e	 x
	 y  
 v			 e	 x
	 y  
 
 2
  v
x    e	
 x
	 y  
 v
	 e	 x
	 y  
  3

 v
y    e	 x
	 y  
 v
	
 e	 x
	 y  
   
 6 v  e	 x
	 y  
   2 e x
 y  
,
yo k i
v
xy    e	
 x
	 y  
 (	    2 ) v
x    e	 x
	 y  
 (	    3 ) v
y    e	 x
	 y  
 
 (	
    2	    3	    6 ) v  e	 x
	 y  
   2 e x
 y
t e n g l ama g a   e g a   b o’ l ami z .   U s h bu   t engl i kd a  	
   v a  	   o ` z g armas l a r n i
s h u n day   t a n l a y mi z ki,   o x i r g i   t e n gl i k d a   bir i n c h i   ta r t i b l i   x u s u s iy
h o sila l ar   q a t n as h m as i n .   Bu n i n g   u c hun  	
   	3 ,  	      2   d e b
t a n l a y m i z  v a   q u y ida g i   t e n gl ama g a   e g a   b o’ l am i z :
e 3 x
 2 y  	

v
x y     	2 e x
 y  
,
y a` ni
B u  e r da v
x  
	
 v
xy     	
2 e  2 x
 y  
.
d e b  b elg i l ash  ki r i ta m i z .   U  h ol d a   u sh b u	

y     	2 e  2 x
 y
c h i z i q l i t e ng l ama g a   e g a   b o’ l amiz  v a  u n i   y e c h a m i z .   N a t i j a d a	

      2 e  2 x
 y  
 C ( x ) ,
y a' n i
v
x       2 e  2 x
 y  
 C ( x )
c h i z i q l i t e ng l ama g a   e g a   b o’ l ami z .   Bu   t e ng l ama n i   i n t egr a l l a b ,
39 v    e  2 x
 y  
   f   ( x )    g ( y )  e kan l i gi n i   h o s i l  
q i l ami z .
u ( x , y )      v ( x ,   y )  e 3 x
 2 y 
a l mas h ti r i s h g a  
asos a n,u(x,y)	e
xy
 	

 f	(x)	g(y)
		e
3x2y
u m u m i y   y e c h i m n i   h os i l   q i l ami z ,   b u   y er da   f   ( x ) v a g ( x )
f u n k s i y a l ar  i x t i y or i y   di ff e r e sia l l an u vc h i   f u nk s i y ala r di r.
M u s t a q i l   y ec h ish   u c hun  m i sol l a r
Q uy i d a  be r i l g a n  t en g l amalarn i ng  u m u m i y   y e c hi m ini   t o p in g :  9 . 1 .  	
u
x y  	4u x  		3u y  	12u  	  	0   .
9 . 2 .  	
u
x x  	4u xy  	5u y y  	  	0   .
9 . 3 .  	
u
x y  	s i	n  	y		u
x  	  	0   .
9 . 4 .  	
u
x y   	2u
x   	5u
y   	10u     	2 e 3 x
 2 y  
. 
9 . 5 .  	
3u
xx  	5u xy  	2u yy  		3u x  		u y  	  	2   .
9 . 6 .  	
u
x y  	  	au
x  		bu y  	  	abu  	  	0   .
9 . 7 .  	
u
x x   	a 2	u
yy     	0   .
9 . 8 .  	
u
x x     	2au
x y     	a 2	u
yy   	u
x     	au
y   	
0
  .  9 . 9 .  	u
x x  	4u x y  	  	4u
yy  		u x  	2u y  	  	0
.
40 41 2x yx9 . 1 0.  u
x x  	9u y y  		6u x  	  	0   .
9 . 1 1.  	
u
x y   	3u
x   	4u
y     	2 e 3 x
 2 y  
.
9 . 1 2.   u
x x      x  u
x      0   .
9 . 1 3.  	
u
x x   	u
x y   	6u
y y     	2u
x   	3u
y      e 2 x
 y
.   9 . 1 4.  	
u
x x   	2u
x y   	8u
yy     	2u
x      e 3 x
 2 y  
. 
9 . 1 5.  	
u
x y  	  	y		u
x  	  	0   .
9 . 1 6.
9 . 1 7.
9 . 1 8.	
u x x  	16u y y  		6u y  	  	0   .	
u
x x  	u yy  		6u x  		4u y  	  	0   .
u  1
 u      0   .
c o s   y
42 2n                                               Xulosa 
Ma ' l u m k i ,   c hi z i q l i   a l mas h t i r i sh n i   m o s   t a n l a s h   y o ’ l i   bi l an
k v a d r a t ik   f or m a n i nga
i j	( x 0	)
  ma t r i t s a s i n i   d i a g o n a l   s h a k lg a ,   y a' n i
  	

i  		 i k a n o n i k   s h a k l g a   k е l ti r ish   m u m k i n   b o ’ l i b ,   bu n d a
i  1	
	i
,   i    1 ,   n k o e ff i t s i е n t l ar   1 ,    1 ,   0   qi y ma t l a r n i   q a b u l   q i l a d i ,
b un d a n   t a s h qari   in е r t s i y a   q o n uniga   ko’r a ,   m u s b a t,   m a n f i y   v a   n o l g a
t е n g k o e ff i t s i е n t l ar so n i k v a d r a t i k for ma n i k a n o n i k shak lg a
k е l t i ri s h da g i   c h i z i q l i   a lm a s h t iri s h g a   n i s b a t an  i n v a r i an t d i r.
A g a r   b a rc h a	
n t a	
i k o e ff i t s i е nt l ar   b i r   x i l   i s h or a l i
b o ’ l sa ,   u   h ol d a   t е ng l ama             x 0  
nu q t a d a   e l l i p t i k   t i p da gi   t е n g l ama
d е b,   a g a r  	
n 	1   t a  	
i   k o e ff i t s i е n t l ar   b i r   x i l   i s h or a l i   v a   b i t t a
k oeff i t s i е nt   un g a   q a r a m a – q ars h i   i s h ora l i   b o ’ l s a ,   u   h ol d a   t е n gl a m a
x 0  
n u q t a d a
g ip е r b o l ik   t i p da g i   ( y o k i   n or m al   gip е rbo l ik   t i p da gi )   t е n g l ama   d е b,
a g a r  	

i       k o e ff i t s i е n t l ar n i n g  	m   t a si   bi r  x i l   i s h or a l i   v a  	n	m   t a si 
un g a   qa r am a – qars h i   i s h o ra l i      
 m  
 1 ,   n
 m  
 1

bo’lsa, u holda
t е nglama x0 nuqtada ultragip е rbolik tipdagi t е nglama d е b, agar i	

koeffitsi е ntlarning h е ch bo’lmaganda bittasi nolga t е ng bo’lsa, u 
holda t е nglama x0 nuqtada parabolik tipdagi t е nglama d е b ataladi
43                                  Foydalanilgan adabiyotlar 
Бицадзе   А . В .  Уравнения   математической   физики .  М.: Наука, 1982.
2. Бицадзе А.В. Краевые задачи для эллиптических уравнений второго 
порядка. М. “Наука”. 1966.
3. Бицадзе А.В. Некоторые классы уравнений в частных производных. М. 
“Наука”.1981.
4. Бицадзе А.В., Калиниченко Д.Ф. Сборник задач по уравнениям 
математической физики. М.: Наука, 1977.
5. Салоҳиддинов М. Математик физика тенгламалари.Т.: Ўзбекистон, 2002.
6. Владимиров В.С. Уравнения математической физики. М.: Наука, 1988.
7. Владимиров В.С., Михайлов В.П., Вашарин А.А., Каримова
Х.Х., Сидоров Ю.В., Шабунин М.И. Сборник задач по уравнениям 
математической физики. М.: Наука, 1982.
8. Курант Р., Гильберт Д. Методы математической физики. т.1,2. М. 
“Гостехиздат”.1951.
9. Тихонов А.Н.,Самарский А.А. Уравнения математической физики. М.: 
Наука, 1972.
10. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по 
математической физике. М.: Наука, 1980.
44

XUSUSIY HOSILALI DIFFERENSIAL TENGLAMALAR UMUMIY YECHIMI 

Sotib olish
  • O'xshash dokumentlar

  • Ikkinchi tartibli sirtning asimptotik konusi va diametral tekisligi
  • Fazoda tekislik va to`g`ri chiziqning o`zaro joylashuvi
  • Bir pallali giperboloid va giperbolik paraboloidning to’g’ri chiziqli yasovchilari
  • Tekislikda koordinatalar metodi
  • Ikkinchi tartibli chiziqni tenglamasiga ko’ra yasash

Xaridni tasdiqlang

Ha Yo'q

© Copyright 2019-2025. Created by Foreach.Soft

  • Balansdan chiqarish bo'yicha ko'rsatmalar
  • Biz bilan aloqa
  • Saytdan foydalanish yuriqnomasi
  • Fayl yuklash yuriqnomasi
  • Русский