Kirish Roʻyxatdan oʻtish

Docx

  • Referatlar
  • Diplom ishlar
  • Boshqa
    • Slaydlar
    • Referatlar
    • Kurs ishlari
    • Diplom ishlar
    • Dissertatsiyalar
    • Dars ishlanmalar
    • Infografika
    • Kitoblar
    • Testlar

Dokument ma'lumotlari

Narxi 40000UZS
Hajmi 496.9KB
Xaridlar 0
Yuklab olingan sana 02 Fevral 2024
Kengaytma docx
Bo'lim Kurs ishlari
Fan Informatika va AT

Sotuvchi

Saidmuhammadalixon Ataullayev

Ro'yxatga olish sanasi 29 Noyabr 2023

150 Sotish

Ratsional kasrlar

Sotib olish
O‘ZBEKISTON  RESPUBLIKASI  OLIY TA’LIM,  FAN VA
INNOVATSIYALAR VAZIRLIGI
TOSHKENT AMALIY FANLAR UNIVERSITETI
“MATEMATIKA VA KOMPUTER INJINIRING”
KAFEDRASI
“ DASTURLASH ”  fanidan
            Mavzu:
______________________________________________________________
______________________________________________________________
______________________________________________________________
Bajardi:      ___________________ guruhi talabasi
___________        __________________________
Q abul  q ildi:    ___________        __________________________
Toshkent – 20__ y.KURS   ISHI TOSHKENT  AMALIY FANLAR UNIVERSITETI
“MATEMATIKA VA KOMPUTER INJINIRING”
Kafedrasi
“ DASTURLASH ”  fanidan
kurs   ishi bo`yicha berilgan 
texnik topshiriq
Variant  ___
Mavzu :  _____________________________________________________
_____________________________________________________________
_____________________________________________________________
1. Kurs ishini topshirish muddati:  _______________________________
2.   Kurs   ishini   bajarish   uchun   boshlang’ich   ma’lumotlar:   Adabiyotlar,   nazariy
ma’lumotlar, grafik muharrirlar. _______________________________
3.   Tushuntiruv   yozuvi   tarkibi:   Kirish,   mavzu   bo’yicha   nazariy   ma’lumotlar,   amaliy
qismda   berilgan   topshiriq   varianti   bo`yicha   grafik   ishlanmalar,   xulosa,   foydalanilgan
adabiyotlar ro’yxati, ilova. _______________________________
4. Grafik materiallar:  tasvir, chizma va boshqalar.
5. Topshiriq berilgan sana:  _____________________________________
6. Bajarish uchun qabul qilib oldi:   _____________________________ 
________________ fakulteti, ________________________ guruh talabasi 
7. Rahbar:  __________________________________________________ «Tasdi q layman»
“ Matematika va komputer injiniring ” 
kafedrasi   mudiri  __________   dots .
_____________      ___ _______ 20 ___    y.  Ekspert guruhi baholari
F.I.O Baho Imzo
Rasmiylashtirish
Himoya
Savollar:
O’rtacha baho RA T SIONAL KASR LAR
Reja:
1.   Kasr-ra t sional funksiya larni   sodda  kasrlarga ajratish
2.  Eng sodda ra t sional kasrlarni integrallash
3.  Ba’zi irr at sional ifodalarni integrallash
Tayanch   so zlar:ʻ   ratsional   kasr,   ko phadning   koeffitsiyentlari,   noto g‘ri   kasr,   to g‘ri	ʻ ʻ ʻ
kasr, qoldiq,   sodda ratsional kasrlar,    noma’lum koeffitsientlar usuli,   o	
ʻ rniga qo yish  	ʻ usuli,
sodda   ratsional   kasrlarni   integrallash   funksiya,   kasr-ratsional,   integral,   koeffisiyent,
integrallash jadvali, rekurent formula
Har qanday ratsional funksiyani ratsional kasr ko’rinishida, ya’ni ikki 
ko’phadning nisbati ko’rinishida tasvirlash mumkin:
Q ( x )  
   B
0   x m
    B
1 x m
 1
  ...     B
m
f  ( x ) A
0   x n
    A
1 x n
 1
  ...     B
n
Muhokamaning umumiyligini cheklamasdan, bu ko’phadlar umumiy ildizga 
ega emas deb faraz qilamiz.
Agar suratinng darajasi mahrajning darajasidan past bo’lsa, kasr  to’gri kasr 
deb ataladi,  aks holda  noto’g’ri kasr  deb ataladi.
Agar kasr no’to’g’ri bo’lsa, suratni maxrajga (ko’phadni ko’phadga bo’lish qoidasi 
boyicha) bo’lib, berilgan kasrni ko’phad bilan biror to’g’ri kasrning yig’indisi 
ko’rinishida tasvirlash mumkin:
bu yerda  M(x)  – ko’phad,   – to’g’ri kasr. 1 – misol. Noto’g’ri ratsional kasr berilgan bo’lsin:
.
Suratni maxrajiga (ko’phadlarni bo’lish qoidasi boyicha) bo’lib, shuni hosil 
qilamiz:
.
Ko’phadlarni integrallash hech qanday qiyinchilik tug’dirmagani uchun, ratsional 
kasrlarni integrallashdagi asosiy qiyinchilik to’g’ri ratsional kasrlarni integrallashdan 
iboratdir.
Ma`lumki, P
n ( x)=a
0  x n
+a
1 x n-1
+ a
2 x n-2
+....+ a
n-1 x+a
n funksiya
darajali ko’phad deyiladi. Bunda  a
0 , a
1 , a
2 .... a
n - ko’phadning koeffisiyentlari,
n  - daraja ko’rsatkichi.
Ikki ko’phadning nisbati kasr-ratsional funksiya yoki ratsional kasr deyiladi:
R ( x )  Q m ( x )
 b x   m	 b x	 m1  ....	  	
b	
x  
b
m
0 1 m  1
P  ( x )	
a0
x   n	 a x	 n1  ....	  	
a	n
 1	
x  
a nn 1
Agar  m<n  bo’lsa, u	
holda	ratsional kasr  to’g`ri, agar  m	 n  bo’lsa,u   holda
ratsional kasr noto’g’ri kasr  bo’ladi.
R(x)- r atsional kasr noto’g’ri bo’lgan hollarda kasrning  Q
m (x)  suratini  P
m (x)
maxrajiga odatdagidek bo’lish yo’li bilan uning butun qismini ajratish kerak:
Shunday qilib, noto’g’ri ratsional kasr bo’lgan holda, undan  q(x)  butun qismni va
r (  x )
to’g’ri kasrni ajratish mumkin. Demak, noto’g’ri ratsional kasrni  integrallash
P  (  x )
n
ko’phadni va to’g’ri ratsional kasrni  integrallashga keltiriladi.
Misol:
R ( x )  	
2x4  3x3 	 1	
x2 	 x  2
noto’g’ri ratsional kasrni  butun qismini ajrating.	
Yechish : 	R(x)	 - ratsional kasr noto’g’ri kasr, chunki suratning darajasi maxrajning	
darajasidan katta 	(4>2) Ko’phadlarni bo’lish qoidasi bo’yicha suratni maxrajga bo’lamiz.
 2 x 4 3x3
 1	x	2
   x    2

	
 2x3
  4 x	2x2   5 x    9
 2 x 4

I. 
   5 x 3
   4 x 2
  1    
5 x 3
   5 x 2
  10  x


 9 x 2
  10  x   1
J. 
 9 x 2
   9 x   18


19  x   19
Shunday qilib,	
R(x) 	 2x2 	 5x 	 9	
	
 19	x 	 19	
ni hosil qilamiz.	x2 	 x  	
2
Quyidagi ko’rinishdagi kasrlar eng sodda  ratsional kasrlar deyiladi.
F A
   a
A
II ; ( K    2 va  butunson )	
x  	
aK
III Ax     B
( D  0)
x2 	 px	 	 	
q
IV Ax    
B	
(S 	 2 va 	butun	sonlar, hamda 	D 	 	
0)	
x2 	 px	 	 	
qS
Bunda  A, B - haqiqiy koeffisiyentlar,  a, p, q  lar ham haqiqiy sonlar.
Ushbu   R ( x )     Q
m
  ( x )
  to’g’ri ratsional kasrni qarab chiqamiz, bu kasrning  Pn(x)
P
n  ( x )
maxraji   (x-a) K
,   (x 2
+px+q) S
  ko’rinishdagi   chiziqli   va   kvadrat   ko’paytuvchilarga
yoyiladi, bunda  (x-a) K
 ko’rinishdagi ko’paytuvchi  K  karralikdagi haqiqiy ildizga mos
keladi.
(x 2
+px+q) S
     ko’rinishdagi  ko’paytuvchi
S   karralikdagi  kompleks  qo’shma
ildizlarga mos keladi. Pn(x)=a
1 (x-
1 ) K1
 (x-	
2 ) K2
....(x-	
t ) Kt
-(x 2
+p
1 x+q
1 ) S1 .
(x 2
+p
2 x+ q
2 ) S2
...(x 2
+px+ q
i ) Si
(1)
Har qanday    R ( x )     Q
m
  ( x )
  ratsional kasrni  I, II, III, IV  turdagi oddiy kasrlarning
P
n  ( x )
yig’indisi  ko’rinishida ifodalash mumkin. Bunda
a)  (1)  yoyilmaning  (x-	
 )  ko’rinishdagi ko’paytuvchisiga  I  turdagi bitta	
A	
kasr	
x 

mos keladi.
2 (1)  yoyilmaning  (x-	
 ) K
 ko’rinishdagi ko’paytuvchisiga  I  va  II  turdagi  K  ta 
kasr mos keladi.
A
	
A 	A A
q
 x  	
   K
 x  	   K    1  x  	   K    2   .....     x   	   
1 2 3
(4) (1)  yoyilmasining  (x 2
+px+q)  ko’rinishdagi ko’paytuvchisiga  III  turdagi 
kasr mos keladi.
1. (1)  yoyilmaning  (x 2
+px+q) S
 ko’rinishdagi ko’paytuvchisiga  III  va  IV  turdagi 
S  ta kasr mos keladi.	
A1x 	 B1	A2 x 	 B2	Ai x 	 Bi
  ..... 
;	
x2 	 px	 	 	
qe1	
x2 	 px 	 qe	
1	x2 	 px	 	
q
-Misol .    R ( x )  	
x 	 2
;	
x3  x
x    2 x    2	
x 	 2
R ( x )  
 	
xx 2  	
1 	
x3  	 	
x	
xx 1	x	
1
x    
2	

A
 B
 C
;    A , B , C    ?
x 3
     x
x   x   1    x   1
I va II turdagi oddiy kasrlarni integrallash jadval integrallariga  keltiriladi.
I .
 A dx    
A 	
d (x  a)   
A ln	x  	
a	x  a	x  a
II .   
   Adx
 K      A   x     a   K
 d  ( x    
a )  
x    a  C (x  a)K 1A
A    C      C ;	
(1  K )(x  a)K 1
 K  1
III. Turdagi integrallarni ko’rib chiqamiz:
	
Ax	 	 B P 2	
dx	, ‡—’Љ—D	 	

   q    0x 2
    px  
q 4
Suratda kasrning maxrajidan olingan hosilani ajratamiz.
(x 2
+px+q) 1
 =2x+p
Ax     B	
A2x 	 p	
 Ap	
 
B
2 x     p
A  Ap  dx	
III	. 	
	
dx	 	

2 2
	

dx  
	
dx	  	B	
		;	
x
2	
 px	 	 	
q 2
   px	 q	2	x 2	
 px	 	 	
q	x
2 px	 	 	
q	x
 2  
Integrallardan birinchisi  ln|x 2
+px+q|  ga teng. Ikkinchi integralni hisoblash 
uchun maxrajida to’liq kvadratni ajratamiz.  P 2	P2
x 2
+px+qq     x       q   ;
4	
2
	
P2	P2
Bunda
q     0  ,  chunki shartga ko’ra   D  

 q 	 0
4 4
Demak,  ikkinchi integral jadval integraliga keladi.  Shunday qilib,

 p 
d    x 
 Ax     B
dx  
 A	
x2
   px    
q  	 Ap 
  2 
 A	
x2 	 px	 	 	
q	ln	 B		ln	2	2	2
x    px     q 2  2   
 p 	
 q  P 2
   x 
4	
2

x  
 P
 Ap  1
2
 B    arctg    C	
2	2
 2  
q  	P q  	P
4 4
1-Misol . Integralni hisoblang.
J  
 3 x    8	
dx	;	
x
2
  4 x    8
Yechish: suratda maxrajining hosilasini ajratamiz.	
(x	2+4x+8)	1=2x+4	
3x 	 	
8	
3	2x 	 4
3
 4  8	
2x 	 4
J  
 dx  
 2	2	3
	dx	 	 	
2 dx
dx  
	
x
2	x 2
  4 x   8	2	x 2	x 2
  4 x    8  4 x    8	
 4x 	 	
8 
Birinchi integral  ln|x 2
+4x+8|  ga teng. Ikkinchi integralning maxrajida to’liq 
kvadrat ajratamiz.
(x 2
+4x+8)=(x+2) 2
-4+8=(x+2) 2
+2 2
Natijada quyidagini hosil qilamiz.
J =	
3 ln | x 2	+ 4x + 8 | 
+2		
d(x + 2)
	3 ln | x 2	
+ 4x + 8 | +arctg x + 2	 C;	2	(x + 2)	2
	22	2
2
Endi IV turdagi integralni hisoblaymiz.
	
Ax + B
dx  ; bunda D =	P2    q    0	
(x2 + px + q)	 n4
Bunda ham   x 2
+px+q  uchxadning hosilasini ajratishdan boshlaymiz.
(  Ax     B ) dx  
IV  .
  
x 2  
+ px + 
q  n  x 2  + px + q  
   2 x     p	
A
(2 x     p )     B  
	Ap
(2 x     p ) dx	
A	

2 2
dx  
  x 2
 + px + q  n	2	x2 + px + q	n   
    
B
 d  ( x   p Ap  )	2	

	
p2 

n
2 

p   2
  x +   + q - 
4
 2  


 
Birinchi integralni hisoblasak bo’ladi:  (2 x    
p ) dx    ( x 2
    px     q )  n
 d  ( x 2
    px    
q )   1
2 n(1  n)	
(x 2    px    
q ) n  1
( x      px     q )
Ikkinchi integralni hisoblaymiz:
	
p 
belgilashlarni kiritamiz.  0     q  
	p2 
a	2
deb olamiz.   x       t ; dx    dt	
4	2
 
 dt	
 1	
(t 2    a 2
 )     t	2
dt
 1
 dt	
 1
	
t 2dt	
;
( t	
2 
a	
2
) n	a 2
( t	
2   
a	2
) n	a
2	
(t
2 
a	
2
) n  1	a
2
( t	2 
a	
2
)
n	
Oxirgi integralga bo’laklab  integrallash formulasini qo’llaymiz:
U     t dv  
 tdt	
;	(t 2 	 a2 )n
du    
dt v  
	
1 	
d (t 2 	 	
a2 )	
1
2	
(t 2
   a 2	) n	
2(1	  n)	
(t	
2 
a	
2
)
n 1
 t   2
dt
 t	
 1 
dt	
(
t
2	 a
2
) n
2(1	 n)(t
2 
a 2	
) n	2(n 	1)	
(
t 2 
a	
2
)
n 1
Agar   J
n    
	
t 2dt	
deb belgilasak, quyidagini hosil qilamiz.	(
t
2 
a	
2
)
n
1)     J
n
 t	
	
2n  3	 Jn
1	2(n 1)a2 	 (t 2 	 a2 )n	
1	2(n 1)a2
Bu jarayon quyidagi integralni hosil qilgunimizcha davom etadi.	
J1
	 	

dt
	
1arct
g t	 C	t2
 
a	2	a	a
formula rekurent (qaytuvchan) formula deyiladi. T a ‘ r i f. Ushbu ko’rinishdagi to’g’ri ratsional kasrlar
A
I.
x     a
A
II.     x     a  k(k	 –butun musbat son 	k≥2)
III.	
Ax	 	 B	
x 2 	 px	 	
q
Ax     B
IV.
 
( x 2     px    
q ) k (mahrajning ildizlari kompleks sonlar, ya’ni    p
2
     q    0  )
4
( k -butun musbat son,  k ≥2;
mahrajning ildizlar kompleks sonlar); I, II, II va IV tipdagi  eng 
sodda ratsional kasrlar  deb ataladi.
I, II va III tipdagi eng sodda kasrlarni integrallashda katta 
qiyinchilikka uchramaymiz, shuning uchun ularning integrallarini hech 
qanday izohsiz keltiramiz:
K.   
x  
 A
a  dx     A ln |  x     a  |   C	
II. 

A	dx	 	 A ln	 	(x  a)k dx	 	
 A	
(x  a)k 1
 C 	
	(x  a)k
   k   1	

A
   C	(1 k )(x  a)k 1
III. . IV tipdagi eng sodda kasrlarni integrallash murakkabroq hisoblashni talab qiladi.
Shu tipdagi integral berilgan bo’lsin:
IV.  .
Quyidagicha almashtiramiz:
.
Birinchi integral  ,   almashtirish yordami bilan 
olinadi:
.
Ikkinchi integralni (uni  I
k  bilan berlgilaymiz) ushbu ko’rinishda yozamiz:
,
bu yerda
deb faraz qilamiz (maxrajning ildizlari farazga ko’ra kompleks sonlar, 
demak  ). Endi quyidagicha kirishamiz:
. (1)
So’nggi integralni bunday almashtiramiz:
. Bo’laklab integrallab, quyidagini hosil qilamiz:
.
Bu ifodani (1) tenglikka qoysak, quyidagi hosil bo’ladi:
.
O’ng tomonda  I
k  tipidagi integral bor, lekin integral ostidagi funksiya maxrajining
daraja ko’rsatkichi uning daraja ko’rsatkichidan bitta birlik past  (k–1),  shunday 
qilib,  I
k  ni  I
k-1  orqali ifodaladik.
Shu yo’l bilan davom etib, ma’lum integral
ga yetib boramiz. So’gra  t  va  m  o’rniga ularning qiymatlarini qo’yib, IV
integralning  x  va berilgan A,B,p,q sonlar orqali ifodasini topamiz.
2 – misol.
.
Oxirgi integralga  x+1=t  almashtirishni qo’llaymiz:
. Oxirgi integralni qaraymiz
Demak,
.
oxirgi natija quyidagi ko’rinishda bo’ladi:
.
Endi har qanday to’gri ratsional kasrni eng sodda kasrlar yig’indisiga 
ajratish mumkinligini ko’rsatamiz.
Ushbu to’g’ri ratsional kasr
G
( x )   f
( x )
berilgan bo’lsin. Bu kasrga kirgan ko’phadlarning koeffisentlari haqiqiy sonlar 
va berilgan kasr qisqarmaydigan kasr deb faraz qilamiz (bu esa surat va mahraj 
umumiy ildizga ega emas degan so’zdir).
1 – t e o r e m a.   x=a mahrajning k karrali ildizi, ya’ni f(x)=(x-a) k
f
1 (x) bo’lsin, bu
yerda f
1 (a)≠0; u holda …. To’’ri kasrni boshqa ikki mo’g’ri kasr yig’indisi
shaklida quyidagicha tasvirlash mumkin
F  ( x )
 A
F1 (x)
f  ( x ) ( x     a ) k
( x     a ) k
   1
  f  ( x )
1
bu yerda A nolga teng bo’lmagan o’zgarmas son, F
1 (x) ko’phad, buning 
darajasi (x-a) k-1
 f
1 (x) mahrajning darajasidan past. 3 – t e o r e m a .  Agar f(x)=(x 2
+px+q) φ
1 (x) bo’lsa (bu yerda  φ
1 (x) 
ko’phad
x 2
+px+q ga bo’linmaydi), …. to’g’ri ratsional kasrni boshqa ikki too’g’ri kasrning
yig’indisi ko’rinishida tasvirlash mumkin:F (x)
 Mx     N
 
1  ( x )
f  ( x )	
(
x	
2 px	 	 	
q) k
( x	
2 px	 	 	
q)	
1
  ( x )
1
Isbot.  Ushbu ayniyatni yozamiz:
(4)
bu ayniyat har qanday  M  va  N  uchun to’g’ri;  M  va  N  ning shunday qiymatini
topamizki, unda   ko’phad  x 2
+px+q  ga bo’linsin. 
Buning uchun
x 2
+px+q  ning   ildizlariga teng ildizlarga ega bo’lishi zarur va 
yetarlidir. Demak,
yoki
lekin   aniq bir kompleks son, buni K +iL  ko’rinishda yozish mumkin, 
bu yerda  K  va  L  haqiqiy sonlar. Shunday qilib,
,
bundan yoki
.
M  va  N  ning shu qiymatlarida   ko’phad   ildizga,
demak,   qo’shma ildizga ham ega bo’ladi. Bu holda ko’phad 
va   ayirmalarga, demak, ularning ko’paytmasiga, ya’ni  x 2
+px+q  ga 
qoldiqsiz bo’linadi.  Bo’linmani Ф
1 (x)  bilan belgilab, quyidagicha yoza olamiz:
.
(5) tenglikdagi ohirgi kasrni  x 2
+px+q  ga qisqartirib, (3) tenglikni hosil 
qilamiz, bunda Ф
1 (x)  ning darajasi maxrajning darajasidan past ekani ravshan.
Shuni isbot qilish talab qilingan edi.
1.   Kasr-ra t sional funksiya lar ni  sodda  kasrlarga ajratish
Ma’lumki, Pn(x)=a0xn+a1xn−1+a2xn−2+...+an−1x+an   
funksiya   n-   darajali   ko phad   deyiladi,   bunda    	
ʻ	a0,a1,a2,...,an –ko phadning	ʻ
koeffitsiyentlari. 
Quyidagi 	
n	n	n	n	m	m	m	m	
n
m	
b	x	b	xa	x	a	
b	x	b	xb	x	b	
x	P	
x	Q	x	R					
						
				
1	1	1	0	
1	1	1	0	
...
...	
)	(	
)	(	)	(
                         (11.1)  
ko rinishdagi kasrga 	
ʻ kasr-ratsional funksiya  yoki qisqacha  ratsional   kasr  deyiladi.
Bu yerda 	
N	n	m		,  va  	m	j	n	i	R	b	a	j	i	,1	,	,1	,	,			 .
Agar 	
n	m	 bo lsa, 	ʻ to g‘ri kasr	ʻ , 	n	m	 bo lsa, 	ʻ noto g‘ri kasr	ʻ  deyiladi.
Har qanday noto g‘ri   kasr ko phadlarni bo lish qoidasi yordamida qandaydir	
ʻ ʻ ʻ
ko phad va to g‘ri  kasr yig‘indisi shaklida ifodalanadi:	
ʻ ʻ	
)	(
)	(	)	(	)	(	
)	(	)	(	x	P	
x	r	x	M	x	P	
x	Q	x	R	
n	nm	n
m				
.                                        (11.2)
Masalan,	
10	3	
12	33	10	3	
1	3	
2	
2	
2	
2	
4	
		
						
		
	
x	x	
x	x	x	
x	x	
x ,  chunki 
           x 4 
+ 2 x 2 
+ 3 x  – 1
                                                                                        x 4
+ 3 x 3
–  x 2
x 2
−3 x  +10
−3 x 3
+  x 2  
+2
 − 3 x 3
–9  x 2  
+ 3 x
10 x 2 
– 3 x  + 2
    10 x 2 
+ 30 x  – 10
            – 33 x+ 12
  Quyidagi kasrlar  eng  sodda ra t sional kasrlar deyiladi:  
 I. A
x−α ,          II.	
A	
(x−	α)k  	(k≥	2	va	butun	son	)
 III.	
Ax	+B	
x2+	px	+q
(maxrajning	diskriminanti	D	<0) .
І V.	
Ax	+B	
(x2+	px	+q)s  	(s≥	2	va	butun	,	D	<0).
(Bu yerda  A, B  – biror haqiqiy koeffitsientlar   α ,  p ,  q  lar ham haqiqiy sonlar) 
  Ma’lumki,   har   qanday   haqiqiy   koeffitsientli   ko phad   quyidagi   ko paytma	
ʻ ʻ
shaklida ifodalanadi:	
sts	s	t	k	k	n	q	x	p	x	q	xp	x	x	x	a	x	P	)	(...	)	(	)	(...	)	(	)	(	2	1	1	2	1	0	1	1														
,            (11.3)            
bu   yerda  
		,...,1 lar   ko phadning  	ʻ	k	k	,...,1   karrali   haqiqiy   ildizlari,	
)	,1	(,0	4	2	s	i	q	p	i	i			
va 	n	t	t	k	k	s						2	...	2	...	1	1	 .
Teorema   ( to g‘ri     kasrni   sodda   kasrlar   yig‘ndisiga   ajratish	
ʻ
haqida) Maxraji (11.1) shaklda tasvirlangan har qanday to g‘ri  ratsional kasrni I-	
ʻ
IV   turdagi   oddiy   kasrlar   yig‘indisiga   yoyish   mumkin.   Bu   yoyilmada  	
)	(x	Pn
ko phadning har bir 	
ʻ	rk  karrali 	r  haqiqiy ildiziga (	( )	rkr	x	 ko paytuvchisiga)	ʻ	
						
3	1 2	2 3
...	r	
r	
k	
k	r	r r r A
A
A A
x
x x x		    

  
                        (11.4)
ko rinishdagi  	
ʻ	rk  ta oddiy kasrlar yig‘indisi mos keladi. 	)	(x	Pn ko ʻ phadning   har   bir
juft   qo ʻ shma -  kompleks   ildiziga (	
2	( )	t	x p x q		 	  ko ʻ paytuvchisiga )	
						
3 3	1 1 2 2	2 3	2	2 2 2
...	
t t	
t M x N
M x N
M x N M x N
x p x q
x p x q x p x q x p x q	 	
	 	      

 
   
 
     
  (11.5)
ko rinishdagi	
ʻ	t ta oddiy kasrlar yig‘indisi mos keladi.
Yoyilmadagi 	
, ,A M N  koeffitsientlarning qiymatlari esa
1) noma’lum koeffitsientlar usuli ;
2) o	
ʻ rniga qo yish 	ʻ usuli dan biri yoki ikkalasini qo llab aniqlanadi.	ʻ
                                                                                Noma’lum koeffitsientlari usulida  ( )R x   to g‘ri   ratsional kasrning suratidagi	ʻ
ko phad hosil bo lgan kasrning suratidagi ko phadga aynan tengligidan  	
ʻ ʻ ʻ	x  ning bir
xil   daragalari   oldidagi   koeffitsientlar   tenglab,  	
n   ta   noma’lum   uchun  	n   ta
tenglamalar sistemasi hosil qilinib noma’lum koeffitsientlar topiladi.
O rniga   qo yish   usulida   ko phadlar,	
ʻ ʻ ʻ	x   ning   barcha   qiymatlarida   aynan   teng
bo lgani uchun,	
ʻ	x ning tayin xususiy qiymatlarida tenglab noma’lum koeffitsientlar
topiladi.
 1-m isol.  Ushbu   	
R(x)=	x+2	
x3−	x      r a t sional kasrni oddiy kasrlar yig‘indisiga ajrating.
Ye chish.  	
R(x)   r a t sional   kasr   to g‘ri   kasr,   chunki   suratning   darajasi	ʻ
maхrajning darajasidan kichi k . Kasrning maхrajini ko paytuvchilarga ajratamiz:	
ʻ	
x3−	x=	x(x+1)(x−1)
Keltirilgan   teoremaga   asosan,  	
R(x)   kasrni   sodda   kasrlarga   ajratish   bunday
ko rinishda bo lishi kerak:	
ʻ ʻ	
R(x)=	x+2	
x(x+1)(x−1)
=	A
x+	B
x+1+	C
x−1
A ,  B ,  C   koeffi t si y entlarni topamiz. Buning uchun tenglikning o ng qismini umumiy	
ʻ
maхrajga keltiramiz va hosil qilingan tenglikning ikkala qismida maхrajni tashlab
yuboramiz. Bu amallar natijasi quyidagi tenglikdan iborat bo ladi:	
ʻ	
x+2≡	A(x+1)(x−1)+Bx	(x−1)+Cx	(x+1)
.
  x   o zgaruvchiga   istalgan   uchta   haqiqiy   sonli   qiymat   berib,  	
ʻ A ,   B ,   C   larga
nisbatan   uchta   noma’lum   uchta   tenglama   sistemasini   hosil   qilamiz.   Bu   sistemani
yechib,   noma’lum   A ,   B ,   C     koeffisientlarni   topamiz.   Sonli   qiymatlarni   o rniga	
ʻ
qo yish   usuli   ana   shundan   iborat.   Agar    	
ʻ x   o zgaruvchiga   maхrajning   ildizlari	ʻ
qiymati ketma-ket berilsa, yanada sodda tenglamalarni hosil qilamiz, chunki ularda
har gal faqat bitta noma’lum qoladi.
Haqiqatan ham, qat’iy tenglikdagi o zgaruvchiga dastlabki kasr maхrajining	
ʻ
ildizlari  	
0,−1,1   qiymatlarni   beramiz.   Agar  	x=0   bo lsa,  	ʻ	2=	A(−1)   ni   topamiz,
bundan  	
A=−2 .
  Agar   x = − 1
  bo lsa,  	ʻ	1=	B(−1)(−1−1)     ni   topamiz,   bundan   B = 1
2 .
Agar 	
x=1  bo lsa, 	ʻ 3 = C ∙ 1	( 1 + 1	)
bo ladi, bundan 	ʻ C = 3
2 .
 
Endi  berilgan  tenglikni quyidagi ko rinishda yozish mumkin:	
ʻ
                                                                              R(x)=	x+2	
x(x+1)(x−1)=−	1
x	+	1	
2(x+1)+	3	
2(x−1)2-m isol.  Ushbu 	
x
x3−1   ra t sional kasrni  sodda  kasrlar yig‘indisiga ajrating.
Ye chish.  Berilgan kasrni  sodda  kasrlar yig‘indisiga ajratamiz:
x
(x−	1)(x2+	x+1)
=	A
x−	1	+	Bx	+C	
x2+	x+	1	
x≡	Ax	2+	Ax	+	A+	Bx	2+Cx	−	Bx	−	C	
x≡	x2(A+B)+x(A+C−	B)+(A−	C	)
.
K asrning maхraji faqat bitta   haqiqiy ildizga ega (	
x=1 ) . Shuning uchun o rniga	ʻ
qo yish	
ʻ  va  noma’lum koeffitsientlar usullaridan  birdan  foydalanib, quyidagi 
tenglamalar   sistemasini   hosil   qilamiz   va   undan   esa   A ,   B ,   C     koeffitsientlarni
topamiz:  
x=1:1=3A¿}x
2
:0=A+B¿}¿¿¿
     ,   	
x
x3−1
=	x	
(x−1)(x2+x+1)
=	1	
3(x−1)−	x−1	
3(x2+x+1)
2.  Eng sodda ra t sional kasrlarni integrallash
Demak,   integral   ostidagi   har   qanday  	
( )R x   to g‘ri     ratsional   kasrni   (11.4)   va	ʻ
(11.5) formulalarni e’tiborga olib noma’lum koeffitsientli oddiy kasrlarga yoyiladi.
So ng   bu   kasrlardagi   noma’lum   koeffitsientlar   topiladi.   So ngra   bu   sodda   kasrlar	
ʻ ʻ
integrallanar ekan.        
Endi biz bu  to rtta eng sodda 	
ʻ kasrlarning integrallarini hisoblaymiz.
1.	
C	x	A	dxa	x
A						2	ln .
2.	
		
		
			
C	
a	x	k	
A	dx	a	x	A	dx	
a	x	
A kk
k		
		
				
 		
1	1
.
3.	
dxq	px	x	
B	Ax	
			
	
2     integralda  	0		A bo lsa,   suratida     maxrajining   hosilasini	ʻ
hosil qilib olamiz:	
		
2 2 2	
2	2	2	
2 2	
B	x p p	Ax B A A x p	A	dx dx dx	x px q x px q x px q	
 	  	 	 	 	  	     	  	
				


	


			
	
		

	
								
	
			
4	2	
2	ln2	2	2	2	2	2	p	q	p	x	
dx	Ap	B	q	px	x	A	
q	px	x	
dx	Ap	B
.
Oxirgi integralda 	
	0	0	4	
4	
4	
2	2	
					D	p	q	p	q bo lgani uchun, jadvaldagi 	
ʻ			2	2	a	u	
du
integralga keladi. Demak,
                                                                              		C	
p	q	
p	x	arctg	
p	q	
Ap	B	q	px	x	A	dx
q	px	x	
B	Ax		

	

					
		
	
	2	2	
2	
2	4
2	
4
2	ln
2.         (11.6)
4.	
							


	


			
	
		

	
			
		
		
		
	
k	k	k	
p	q	p	x	
dx	Ap	B	dx	
q	px	x	
p	x	A	dx	
q	px	x	
B	Ax	
4	
4	
2	
2	
2	
2	2	2	2	2 .
Bund а         	
			 1
22	)1	(	
1	
2	
2	
2 				
			
		
	
kk	q	px	x	k	
A	dx	
q	px	x	
p	x	A
,              (11.7)
oxirgi integralda  esa   	
2	
4	,2	
2p	q	a	p	x	u				 almashtirish bajaramiz.	
		
		
					
  


 

  du
au u
a
au du
adu
au uau
a
au du
kkkk
22 2
21
222
22 222
2
22 111
.
Birinchi integral berilgan integralning tartibi bittaga kamaygan holi, ikkinchi
integralni   bo laklab   integrallash   mumkin.   Natijada,   quyidagi   rekkurent   formulani	
ʻ
hosil qilamiz:	
							




 1
2221
22222
)1(2 32
)1(2 kkk
au du
ka k
auka u
au du
.              (11.7)
Eslatma.   Agar   maxrajda  	
c	bx	ax		2 ko phad   bo lsa,   avval   a   qavsdan	
ʻ ʻ
chiqariladi:      


	

						
a
c	x	
a
b	x	a	c	bx	ax	2	2
3-misol.  Ushbu	
dx	x	x	
x	
			
	
26	8	2	
2	3
2  integralni hisoblang.
Yechish.   Avval   maxrajidan  	
2   ko paytuvchini   qavsdan   chiqaramiz,   suratida	ʻ
maxrajining hosilasini hosil qilib integrallaymiz.	
					
		
	
		
		
		
			
	
		
	
2	2	2	2	2	3	)2	(	
4	
13	4	
4	2	
4
3	
13	4	
3
4	4	4	2	
4
3	
13	4	
2	3	
2
1	
x	
dx	dx	
x	x	
x	dx	
x	x
x	
dx	
x	x	
x	
		C	x	arctg	x	x							3
2	
3
4	13	4	ln4
3	2
.◄
4-misol.  Ushbu 	
	
dx	
x	x	
x	
			
	
2	2	5	2	
3	7  integralni hisoblang.
Yechish.	
														
	
		
		
		
			
	
		
	
22	2	2	2	2	2	2	2	2	)1	(	
4	
5	2	
2	2	
2
7	
5	2	
7
6	2	2	2	
2
7	
5	2	
3	7	
x	
dx	dx	
x	x	
x	dx	
x	x
x	
dx	
x	x	
x
.
Birinchi qo shiluvchi  (11.6) formulaga ko ra, 
ʻ ʻ
                                                                              	521
27
52 22
27
22
2

 	
xxdx
xx x
.
Ikkinchi integral uchun (11.7) rekkurent formulani qo llasak,	
ʻ	
			

 
 

 

		 2222
2222
22
2)1( )1(
)12(22 322
2)1()12(22 1
2)1( x xd
xx
x dx	
		2
1	
2
1	
8
1	
5	2	(8	
1	
2	2	
			
	
		x	arctg	
x	x	
x
.
Demak,	
			
Cx
arctg
xx x
xxdx
xx x


 


 	
2 1
16 1
)52(8 1
522 7
52 37
2222
2
.
5-mis o l.  Ushbu	
2	
2	
3 2	
( 1)	
x x	dx	x x
 	
	 integralni hisoblang.
Yechish.   Maxrajdagi   ko phadning  	
ʻ	0	x   bir   karrali   haqiqiy   va  	1	x   ikki
karrali ildizlari bor bo lgani uchun 	
ʻ	
2	
2 2	
3 2	
( 1) ( 1) 1	
x x A B C
x x x x x
 	  	  
.
mumiy maxraj berib, suratdagi ko phadlarni tenglaymiz.
ʻ	
2 2 2	3 2 2	x x Ax xA A Bx Cx Cx	       
yoki	
				2 2	3 2 2	x x x A C x A B C A	       
.
Noma’lum   koeffitsientlari   usulidan   foydalanamiz,  	
x   ning   darajalari   oldidagi
koeffitsintlarni tenglaymiz:	
. 2	:	
;3	2	:	
;1	:
0
2	
	
			
		
А	x	
C	B	A	x	
С	A	x
Bundan ,  	
 1	,6	,2				C	B	А . 
Demak,  	
							
		
				dx	x	dx	x	dxx	dx	x	x	
x	x	
1
1	
)1	(	
6	2	
)1	(	
2	3	
2	2	
2
C
xx x
Cx
xx 



16
1ln1ln
16
ln2 2
.
6-mis o l.  Ushbu	
		
	
)2	)(1	(	
)3	(	2	
x	x	x	
dx	x  integralni hisoblang.
Yechish.   Integral  ostida   to g‘ri    ratsional  kasr   va    u    І  turdagi   sodda   kasrlar	
ʻ
yig‘indisiga ajraladi
21)2)(1( 32


 
x D
x B
xA
xxx x
, 
                                                                               bundan ).1	(	)2	(	)2	)(1	(	3	2									x	Dx	x	Bx	x	x	A	x
A ,   B ,   D   koeffutsientlarni   topish   uchun   o rniga   qo yish   usulidan	
ʻ ʻ
foydalanamiz:	
0	x
bo lganda	ʻ	A2	3	 ,  bundan 	;2
3	A	
1x
bo lganda	ʻ	,	3	4	B	 bundan 	;3
4		B	
2x
bo lganda,	ʻ ,67 D
bundan 	
.6
7		D
Shunday qilib , quyidagini hosil qilamiz :
	
	
		
				
	
2
)2	(	
6
7	
1
)1	(	
3
4	
2
3	
)2	)(1	(	
)3	( 2	
x
x	d	
x
x	d	
x
dx	
x	x	x	
dx	x	
C	
x
x	x	C	x	x	x											6	9	
7	8	2	)1	(	ln	2	ln6
7	1	ln3
4	ln2
3
.
7-mis o l.  Ushbu	
	8	3x
dx  integralni hisoblang.
Yechish.   Integral   ostida   to g‘ri     ratsional   kasrning   maxrajidagi   ko phad	
ʻ ʻ
ko paytuvchilarga ajratiladi va sodda kasrlar yig‘indisi shaklida ifodalanadi	
ʻ	
.4	2	2	)4	2	)(2	(	
1	
8	
1	
2	2	3			
									x	x	
N	Mx	
x
A	
x	x	x	x
Umumiy maxraj berib suratlari tenglanadi	
1	)2	(	)2	(	)4	2	(	2								x	C	x	Bx	x	x	A
A ,  M ,  N  koeffitsientlarni topish uchun yuqoridagi usullarni birga qo llaymiz:	
ʻ
. 124: ;0: 112:2
0 2
  
CАx BAx Ax
Bundan ,  	
 31	,	121	,	121				C	B	А  va	
)4	2	(	12	
4	
)2	(	12	
1	
8	
1	
2	3		
					x	x
x	
x	x
.
Endi integralni hisoblaymiz:	
					
		
					
									dx	x	x
x	x	dx	x	x	
x	
x
dx	
x
dx	
4	2	
6	2	2	
2	12
1	2	ln	12
1	
4	2
4	
12
1	
2	12
1	
8
223	
		
	
		
			
						2	2	2	3	)1	(	
)1	(	
4
1	
4	2	
)2	2(	
24
1	2	ln	12
1	
x	
x	d	
x	x	
dx	x	x	
									C	x	arctg	x	x	x	
3
1	
3	4
1	4	2	ln	24
1	2	ln	12
1	2	
		C	x	arctg	x	x	
x					
		3
1	
3	4
1	
4	2
2	ln	24	2	
2
.
                                                                              Shunday qilib ratsional kasrni integrallash uchun
1)   uning   to g‘ri     yoki   noto g‘ri     kasr   ekanligini   tekshiriladi,   aks   holda(ya’niʻ ʻ
noto g‘ri  kasr bo lganda) butun qismi ajratiladi, ko phad va to g‘ri   ratsional kasr	
ʻ ʻ ʻ ʻ
hosil qilinadi;
2) to g‘ri  ratsional kasrni oddiy kasrlar  yig‘indisiga ajratiladi;	
ʻ
3) yoyilmaning koeffitsientlari topiladi;
4) ifoda integrallanadi.
3.  Ba’zi irr at sional ifodalarni integrallash
Har   qanday   irratsional   funksiyalar   ucnun   ham   elementar   funksiyalar
ko rinishidagi   boshlang‘ich   funksiyalarni   aniqlab   bo lmaydi.   Biz   quyida   ayrim	
ʻ ʻ
almashtirishlar   yordamida     ratsional   funksiyalar   integrallariga   olib   kelinadigan
irratsional funksiyalarning integrallarini ko rib chiqamiz.	
ʻ .
Quyidagi  	
dx	d	cx	
b	ax	
d	cx	
b	ax	
d	cx	
b	ax	x	R	nnsr	sr	sr	
	


	



	

	
	

	
	
	

	
	
	

	...,	,	,	22	11 ,                (11.8)
bu yerda   R -ratsional funksiya,   a ,   b ,   c   ,   d   - o zgarmas sonlar,   	
ʻ r
i ,     s
i     musbat butun
sonlar, integral   m	
t	
d	cx	
b	ax		


           (11.9) almashtirish yordamida ratsionallashtiriladi.
Bu   yerda   m     -       nn
s r
s r
s r
...,,
22
11
  kasrlarning   umumiy   maxraji,   ya’ni	
)	,...	,	(
21 n	s	s	s	EKUB	m	
.
Xususan, 	
dx	x	x	x	x	R
nn
s r
s r
s r	

	


	...,	,	,
22
11
Integral m	
t	x
almashtirish yordamida ratsionallashtiriladi.
8-misol.  Ushbu 	
dx	
x	
x	
		4	3	4  integralni hisoblang.
Yechish.  	
(2, 4) 4	EKUK	 bo lgani uchun, 	ʻ	
					

	

	
	
		
	
	

	
	
				C	t	t	dt	
t	
t	t	dt	
t	
t	
dtt	dx	
t	x	
dx	
x	
x	4	ln	
3
16	
3
4	
4	
4	4	
4	
4	
4	4	
3	3	
3	
2	2	
3	
5	
3	
4	
4	3	
C	x	x	x	t							4	ln	
3
16	
3
4
4 3
4 3
4
.◄
Integral
                                                                              dx
c	bx	ax	
B	Ax	
		
	
2ko rinishida berilgan bo lsin. Avval kasr suratida ildiz ostidagi kvadrat uchhadning	
ʻ ʻ
differensiali   hosil   qilinadi( 0A
),   kvadrat   uchhaddan   to la   kvadrat   ajratiladi   va	
ʻ
quyidagi amallar bajariladi:	
			
		
	
			
	
		
	
	
			c	bx	ax	
dx	
a
Ab	B	
c	bx	ax	
dx	b	ax	
a
A	dx
c	bx	ax	
B	Ax	
2	2	2	2	
2	
2	
	


	

			

	

		


	

						
a
b	c	
a
b	x	a	
dx	
a
Ab	B	c	bx	ax	
a
A	
4	2	
2	2	2	
2
.
Agar  	
0	,	
4 2	
		a	
a
b	с
bo lsa, oxirgi integralni	
ʻ	
C	k	u	u	
k	u
du					
		2	
2	ln
integralga keltirib hisoblash mumkin.
Agar  	
0	,	
4 2	
		a	
a
b	с
 bo lsa,  	
ʻ	
C	
k
u	
u	k
du			
		arcsin	2	2  integralga keltirib
hisoblash mumkin.
Eslatma.   Qulaylik   uchun,   kvadrat   uchhadni   to la   kvadratga   ajratishdan	
ʻ
avval 	
a ning modulini ildizdan chiqarish kerak.
9-misol.  Ushbu	
dx	
x	x	
x	
		
	
8	4
3	5
2  integralni hisoblang.
Yechish.  	
	
		
	
				
		
		
	
	
			8	4	2
4	5	3	
8	4	
4	2	
2
5	
8	4
3	5	
2	2	2	x	x	
dx	dx	
x	x	
x	dx	
x	x	
x
		
		C	x	x	x	x	
x	
dx	x	x										
		
					4	2	2	ln7	8	4	5	
4	2	
7	8	4	5	2	2	
2	
2
.
10-misol.  Ushbu	
dx	
x	x	
x	
			
	
2	2	8	10	
2	3  integralni hisoblang.
Yechish.  Qulaylik  uchun, avval 2 ni ildizdan chiqarib olamiz.	
1	2	2	2
2	
4	5	
2	3	
2
1	
2	8	5	
21	3	I	dx	
x	x	
x	dx	
x	x	
x	
			
		
		
		

.
Hosil bo lgan integralni hisoblaymiz.	
ʻ
                                                                              					
	
				
		
				
	
		
					2	2	2	1	4	5	
2	4	
2
3	
4	5	
8	2	4	
2
3	
4	5	
2	3	
x	x	
dx	x	dx	
x	x	
x	
dx	
x	x	
x	I	
	.)2arcsin(8453
218
12
2 Cxxx
xdx



Demak, 	
C	x	x	x	dx	
x	x
x								
		
	
	)2	arcsin(2	4	4	5	
2
2	3	
2	8	10	
2	3	2	
2
.
Agar integral 	
dx
c	bx	ax	x	
B	Ax	
				

2	)	(	
ko rinishda bo lsa, 	
ʻ ʻ tx 1
	

almashtirish yordamida hisoblanadi.
11-misol.  Ushbu
				10	2	)1	(	2	x	x	x	
dx  integralni hisoblang.
Yechish.
	
			
	
	
	

		
				1	9	9	1	1	
1	
1
1	1	
10	2	)1	(	2	
2
2	
2	
2	t
dt	
t	t	
dt	t	
dt	t	dx	
t	x	
x	x	x	
dx	
		
C	
x	x	
C	t	t			
	
	
	
							1	
1
9	
1	
3	ln
3
1	1	9	3	ln
3
1	
2	2
.
Agar integral	
	
dxcbxaxxR
 	2,
ko rinishda bo lsa, kvadrat uchhadni to la kvadratga ajratib, quyidagi 	
ʻ ʻ ʻ
1)	
	du	u	k	u	R	 22	,
,  )cos(sin tkutku 
almashtirish;
2)	
	du	u	k	u	R	 22	,
, 	)	(	kctgt	u	ktgt	u		 almashtirish; 
3)	
	du	k	u	u	R	 22	,
, 	

	

			
t	
k	u	
t	
k	u	
cos	sin almashtirish
yordamida hisoblanadigan integrallardan biriga keltirish mumkin.
12-misol.  Ushbu	
			dx	x	x	2	2	3  integralni hisoblang.
Yechish.	
	
	
		
								tdt	dx	
t	x	
dx	x	dx	x	x	
cos2	
sin2	1	
)1	(	4	2	3	2	2
                                                                              													C	t	t	dtt	tdt	dtt	t	2	sin	2	)	2	cos	1(	2	cos	4	cos2	sin4	422	
C	x	x	x	x	C	t	t	t												
2	
2	3	)1	(	
2
1	arcsin2	sin	1	sin2	2	
2	2
.
13-misol.  Ushbu
		
	
	 3
2	5	4x	x	
dx
 integralni hisoblang.
Yechish.
 	
								
	
	
	
	
		
	
		
	
		
			3	2	2	2	
3	2	3	2	1	cos	cos
2	
1	2	5	4	t	tg	t	
dt	
t	
dt	dx	
tgt	x	
x	
dx	
x	x	
dx
		
C	
x	x	
x	C	
t	tg
tgt	C	t	tdt	
t	tg	t	
dt		
	
			
	
				
	
			5	4
2	
1	
sin	cos	
1	cos	2	2	3	2	2
.
Ratsional kasrlar va ularni integrallash
Ta’rif.  Ikkita ko’phad nisbatidan iborat funksiya ratsional kasr yoki 
ratsional funksiya deyiladi.  Odatda u  R ( x )
 bilan belgilanadi.	
R(x)=	Qm(x)	
Pn(x)=	bmxm+bm−1xm−1+…	+b1x+b0	
anxn+an−1xn−1+…	+a1x+a0
Ta’rif.  Agar  R ( x )
 ratsional kasrda maxrajining darajasi 	
n>m  bo’lsa, u
to’g’ri,  n ≤ m
 bo’lsa, noto’g’ri ratsional kasr deb ataladi.
Agar 	
R(x)  noto’g’ri ratsional kasr bo’lsa, u holda uni quyidagicha 
yozish mumkin:
R	
( x	) = Q
m ( x )
P
n ( x ) = N
m − n	( x	) + G
r ( x )
P
n ( x ) , r < n .
Ta’rif.  R
1	
( x	) = A
x − a , II. 	R2(x)=	A	
(x−	a)k ,  III.  R
3	( x	) = Ax + B
x 2
+ px + q ,
IV. 	
R4(x)=	Ax	+	B	
(x2+	px	+q)k  ko’rinishdagi kasrlar eng sodda ratsional 
kasrlar deb ataladi. Bu yerda 
A,B,a,p,q−¿ haqiqiy sonlar, 	k=2,3,4	,…  va	
x2+px	+q
 kvadrat uchhad haqiqiy ildizlarga ega emas, ya’ni  D < 0
 deb 
olinadi.
I. 
	R1(x)dx	=	A
x−	adx	=	Aln	|x−	a|+c.
                                                                              II. 	R2(x)dx	=	A	
(x−	a)kdx	=	A	(x−	a)−kd(x−a)=¿¿	
¿	A	
(1−	k)(x−a)k−1+c.
 
III. 
 R
3	
( x	) dx =
 Ax + B
x 2
+ px + q dx = ¿
 A
2	
( 2 x + p	) + ( B − Ap
2 )
x 2
+ px + q dx = ¿ ¿         =	
A
2	(2x+p)dx	
x2+px	+q	+(B−	Ap
2	)	dx	
x2+px	+q=¿{
x2+px	+q=t	
(2x+p)dx	=dt	}¿
 ⟹  
A
2  dt
2 + + ( B − Ap
2 )
 dx
x 2
+ px + q = ¿ A
2 ln	
| x 2
+ px + q	| +	( B − Ap
2	)  d	
( x + p
2	)	
(
x + p
2	) 2
+ m 2 = A
2  dt
2 + + ( B − Ap
2 )
 dx
x 2
+ px + q = ¿ A
2 ln	
| x 2
+ px + q	| +	( B − Ap
2	)  d	
( x + p
2	)	
(
x + p
2	) 2
+ m 2 = A
2  dt
2 + + ( B − Ap
2 )
 dx
x 2
+ px + q = ¿ A
2 ln	
| x 2
+ px + q	| +	( B − Ap
2	)  d	
( x + p
2	)	
(
x + p
2	) 2
+ m 2 = ¿ ¿ ¿ ¿	
¿A
2ln|x2+px	+q|+(B−	Ap
2	)
1
m	arctg	
x+	p
2
m	+C	.
IV. 	
	R4(x)dx	=	Ax	+B	
(x2+px	+q)kdx	=	
A
2(2x+p)+(B−	Ap
2	)	
(x2+px	+q)k	dx	=¿¿	
¿A
2	(2x+p)dx	
(x2+px	+q)k+(B−	Ap
2	)	
d(x+	p
2)	
[(x+	p
2)
2
+m2]
kdx	=¿¿
¿ A
2 	
( x 2
+ px + q	) − k
d	( x 2
+ px + q	) + ¿	
+(B−	Ap
2	)	
d(x+	p
2)	
[(x+	p
2)
2
+m2
]
k=¿	1	
(1−	k)(x2+px	+q)k−1+¿¿
+	
( B − Ap
2	)  dt	(
t 2
+ m 2	) k = 1	(
1 − k	)( x 2
+ px + q	) k − 1 + ¿	
+(B−	Ap
2	)	
m2		t2+m2−t2	
(t2+m2)kdt	=	1	
(1−	k)(x2+px	+q)k−1+¿	
+(B−	Ap
2	)	
m2		dt	
(t2+m2)k−1−	
(B−	Ap
2	)	
m2		t2dt	
(t2+m2)k.
Bu   yerda   ikkinchi   qo’shiluvchi   maxrajida   k − 1
  darajali   kvadrat
uchhad   qatnashgan   integraldan   iborat.   Oxirgi   qo’shiluvchini   bo’laklab
integrallash   formulasini   qo’llab,   undan   ham   maxrajida  	
k−1   darajali
kvadrat   uchhad   qatnashgan   integral   hosil   qilinadi.   Hosil   bo’lgan
                                                                              integralda   yana   yuqoridagi   ishlar   takrorlanadi   va   pirovard   natijadaR1(x),R2(x)
 va 	R3(x)  ko’rinishdagi integrallarga keltiriladi.
Mavzuga doir yechimlari bilan berilgan topshiriqlardan namunalar
1.   5 dx
x + 4  integral hisoblansin.
Yechish:   5 dx
x + 4 = 5
 d ( x + 4 )
x + 4 = 5 ln	
| x + 4	| + C
.
2.   13 dx
( x − 5 ) 7  integral hisoblansin.
Yechish: 	
	13	dx	
(x−5)7=	13		d(x−5)	
(x−5)7=13		(x−5)−7∙d(x−	5)=¿
¿ 13 ∙ ( x − 5 ) − 6
− 6 + C = − 13
6 ( x − 5 ) 6 + C .
3.   5 x − 7
x 2
+ 3 x + 8 dx
 integral hisoblansin.
Yechish: 
 5 x − 7
x 2
+ 3 x + 8 dx =
 5
2	
( 2 x + 3	) + ( − 7 − 15
2 )
x 2
+ 3 x + 8 dx = 5
2  2 x + 3
x 2
+ 3 x + 8 dx − ¿ ¿
− 29
2  dx
x 2
+ 3 x + 8 = 5
2 ln	
| x 2
+ 3 x + 8	| − 29
2  d	( x + 1,5	)	
(
x + 1,5	) 2
+ 5,75 = ¿ ¿
¿ 5
2 ln	
| x 2
+ 3 x + 8	|
  − 29
2 ∙ 1	√
5,75 arctg x + 1,5	√
5,75 + C = 5
2 ln	
| x 2
+ 3 x + 8	| − ¿
− 29	
√
23 arctg 2 x + 3	√
23 + C
.
4. 	
	(x−1)dx	
(x¿¿2+2x+3)2¿   integral hisoblansin.
Yechish: 	
	(x−1)dx	
(x¿¿2+2x+3)2=	
1
2(2x+2)−2	
(x¿¿2+2x+3)2dx	
=	1
2	2x+2	
(x¿¿2+2x+3)2dx	−¿¿
¿¿¿
− 2
 dx
[ ( x + 1 ) ¿ ¿ 2 + 2 ] 2 = 1
2  ( x ¿ ¿ 2 + 2 x + 3 ) − 2
d ( x ¿ ¿ 2 + 2 x + 3 ) − ¿ ¿ ¿ ¿	
−2	dx	
[(x+1)¿¿2+(√2)2]2=(
x+1=t	
dx	=	dt	)=	−1	
2(x¿¿2+2x+3)−¿¿¿
                                                                              −2	dt	
(t2+2)2=	−	1	
2(x¿¿2+2x+3)−	t2+2−t2	
(t2+2)2dt	=¿¿¿ − 1
2 ( x ¿ ¿ 2 + 2 x + 3 ) −
 t 2
+ 2
( t 2
+ 2 ) 2 dt +
 t 2
( t 2
+ 2 ) 2 dt = ¿ ¿
¿ − 1
2 ( x
¿ ¿ 2 + 2 x + 3 ) −
 dt
t 2
+ 2 +
 tdt
( t 2
+ 2 ) 2 ∙ t = − 1
2 ( x ¿ ¿ 2 + 2 x + 3 ) ¿ ¿	
−1
√2arctg	t
√2−	t	
2(t2+2)
+1
2	dt
t2+2
=	−1	
2(x¿¿2+2x+3)−	¿¿¿	
−1
√2arctg	t
√2−	t	
2(t2+2)
+	1
2√2arctg	t
√2=¿−	1	
2(x¿¿2+2x+3)−¿¿	
−1
√2arctg	x+1	
√2	−	x+1	
2(x¿¿2+2x+3)+	1
2√2arctg	x+1	
√2	+C=¿¿	
¿−	x+2	
2(x¿¿2+2x+3)−	1
2√2arctg	x+1	
√2	+C	.¿
Mustaqil yechish uchun topshiriqlar:
1. Quyidagi integrallar hisoblansin.
1)   3 dx
x − 19 ;     2)   7 dx
x + 5 ;     3)   3,5 dx
x − 6,5 ;
4)   dx
x 2
+ 2 x + 5 ;    5)   dx
3 x 2
− 2 x + 4 ;   6)   dx
x 2
+ 3 x + 1 ;
7)   dx
x 2
− 6 x + 5 ;    8)   dx
2 x 2
− 2 x + 1 ;   9)   dx
3 x 2
− 2 x + 2 ;
                                                                              10)   3 x − 1
5 x 2
− 3 x + 2 dx
;  11)   xdx
x 2
+ x + 1 ;   12)   2 x + 7
x 2
+ x − 2 dx
;
13)   x − 1
x 2
− 5 x + 6 dx
;  14)   4 x − 2,4
x 2
− 0,2 x + 0,17 dx
;
15)   ( 2 x + 1 ) dx
( x 2
+ 2 x + 5 ) 2 ;  16)   ( 3 x + 5 ) dx
( x 2
+ 2 x + 5 ) 2 .
Javob: 1)  3 ln| x − 19	| + C
;    2)  7 ln	| x + 5	| + C
;             
3) 3,5 ln	
| x − 6,5	| + C
;  4)  1
2 arctg x + 1
2 + C
;   5)  1	√
11 arctg 3 x − 1	√
11 + C
; 
6)  1	
√
5 ln	| 2 x + 3 −	
√ 5
2 x + 3 +
√ 5	| + C
;   7)  1
4 ln	| x − 5
x − 1	| + C
;    8)  arctg ( 2 x − 1 ) + C
;           9)
1	
√
5 arctg 3 x − 1	√
5 + C
;   10)  3
2 ln	
| x 2
− x + 1	| + 1	
√
3 arctg 2 x − 1	√
3 + C
; 
11)  1
2 ln	
( x 2
+ x + 1	) − 1	
√
3 arctg 2 x + 1	√
3 + C
;
12) 	
ln|
(x−1)3	
x+2	|+C ; 13) 	ln|
c(x−2)2	
x−3	|+C ; 
14)  2 ln	
( x 2
− 0,2 x + 0,17	) − 5 arctg 10 x − 1
4 + C
;
15)  – x − 9
8 ( x
¿ ¿ 2 + 2 x + 5 ) − 1
16 arctg x + 1
2 + C ¿ ;
16) 	
x−5	
4(x¿¿2+2x+5)+1
8arctg	x+1
2	+C	¿ .
Xulosa:
                                                                              Yuqorida   bayon   etilganlarning   hammasidan,   har   qanday   ratsional
funksiyadan   olingan   integral   ohirida   elementar   funksiyalar   orqali   ifoda
etilishi mumkin ekanligi kelib chiqadi, jumladan
1) I tipdagi sodda kasrlar bo’lgan holda – logarifmlar bilan;
2) II tipdagi sodda kasrlar bo’lgan holda – ratsional funksiyalar bilan;
3) III tipdagi sodda kasrlar bo’lgan holda – logarifmlar va arktangenslar bilan;
4) IV   tipdagi   sodda   kaslar   bo’lgan   holda   –   ratsional   funksiyalar   va
arktangenslar bilan chekli shaklda ifoda etiladi.
Foydalanilgan adabiyotlar
2. Claudio Canuto, Mathematical Analysis I. 2008.
                                                                              3. PETER V. O’NEIL, ADVANCED ENGINEERING MATHEMATICS. 
2010.
4. Crowell and Slesnick, Calculus with Analytic Geometry.  2008
5. Algebra va matematik analiz asoslar. A.U.Abduhamidov va 
boshqalar.Toshkent 2014-yil.
6. Aniqmas integrallarda integrallash usullari. A.Begmatov. Samarqand.  2011

RATSIONAL KASRLAR

Sotib olish
  • O'xshash dokumentlar

  • Access dasturi yordamida “dorixona” ma‘lumotlar bazasini yaratish
  • Agile va Scrum metodologiyalari dasturiy ta'minot ishlab chiqish
  • Tashkilot miqyosida masofadan muloqot qilish.
  • Talabalar haqida ma'lumot saqlovchi tizim
  • HTML tili, uning asosiy elementlari. Jadval va rasm hosil qilish. Gipermatn va freymlar joylashtirish

Xaridni tasdiqlang

Ha Yo'q

© Copyright 2019-2025. Created by Foreach.Soft

  • Balansdan chiqarish bo'yicha ko'rsatmalar
  • Biz bilan aloqa
  • Saytdan foydalanish yuriqnomasi
  • Fayl yuklash yuriqnomasi
  • Русский