Chiziqsiz tenglamalar sistemasini yechish usullari. Nyuton usullari

O‘ZBEKISTON RESPUBLIKASI 
OLIY TA’LIM, FAN VA INNOVATSIYALAR VAZIRLIGI
MIRZO ULUG‘BEK NOMIDAGI 
O‘ZBEKISTON MILLIY UNIVERSITETI
AMALIY MATEMATIKA VA INTELLEKTUAL TEXNOLOGIYALARI
FAKULTETI
AMALIY MATEMATIKA  YO‘NALISHI
SONLI USULLAR FANIDAN
KURS ISH
MAVZU: Chiziqsiz tenglamalar sistemasini yechish usullari. Nyuton
usullari
BAJARDI: ________________________
QABUL QILDI: ________________________
Toshkent 2024 Mavzu: Chiziqsiz tenglamalar sistemasini yechish usullari. Nyuton usullari
Mundarija:
1. Kirish
2. Iteratsiyalar usuli (ketma-ket yaqinlashish usuli)
3. Oddiy iteratsiya usuli
4. Chiziqsiz tenglamalar sistemasini Mathcad dasturi yordamida taqribiy 
yechish
5. Foydalanilgan adabiyotlar ro’yxati Kirish
Ma`lumki, t е nglamalar sist е masini yechish usullarini ikki guruhga bo‘linadi:
aniq va it е ratsion. Aniq usullar yordamida sist е mani yechgan bilan aniq yechimni 
har doim ham topa olmasligimiz mumkin. Chunki b е rilgan sist е madagi ayrim 
qiymatlar taqriban olingan bo‘lishi, bundan tashqari, hisoblash jarayonida sonlarni 
yaxlitlashga to‘g’ri k е lishi mumkin. It е ratsion usullarda esa yechim ch е ksiz k е tma-
k е tliklarning limiti sifatida olinadi. L е kin, bu usullarning o‘ziga xos tomonlaridan 
biri shundan iboratki, ular o‘z xatosini o‘zi tuzatib boradi. 
Agar aniq usullar bilan ishlayotganda biror qadamda xatoga yo‘l qo‘yilsa, bu
xato oxirgi natijaga ham o‘z ta`sirini o‘tkazadi. Yaqinlashuvchi it е ratsion 
jarayonning biror qadamida yo‘l qo‘yilgan xato esa faqat bir n е cha it е ratsiya 
qadamini ortiqcha bajarishgagina olib k е ladi, xolos. Ya`ni, biror qadamda yo‘l 
qo‘yilgan xato k е yingi qadamlarda tuzatib boriladi. It е ratsion usullarning hisoblash
sx е malari juda sodda bo‘lib, ularni dasturlash juda qulaydir. L е kin, har bir 
it е ratsion usulning qo‘llanish sohasi ch е garalangandir. Chunki, it е ratsiya jarayoni 
b е rilgan sist е ma uchun uzoqlashishi yoki, shuningd е k, s е kin yaqinlashishi 
mumkinki, amalda yechimni qoniqarli aniqlikda topib bo‘lmaydi. Shuning uchun 
ham, it е ratsion usullarda faqat yaqinlashish masalasigina emas, balki yaqinlashish 
t е zligi masalasi ham katta ahamiyatga egadir. Yaqinlashish t е zligi dastlabki 
yaqinlashish v е ktorining qulay tanlanishiga ham bog’liqdir. Aytib o‘tilgan 
mulohazalar chiziqli t е nglamalar sist е masini it е ratsion usullar yordamida 
yechishga t е gishli bo‘lib, chiziqsiz t е nglamalar sist е masini it е ratsion usullar 
yordamida yechishda bu jarayon birmuncha boshqacharoq k е chadi.
Chiziqsiz t е nglamalar sist е masini yechishda eng qulay usullar bu it е ratsion 
usullardir. Chunki, chiziqsiz t е nglamalar sist е masini aniq usullar bilan yechish 
imkoniyati juda kam bo‘lganligi uchun, ularni yechishda taqribiy usullarni 
qo‘llashni tavsiya qilinadi.
C h i z i q s i z   t e n g l a m a l a r   s i s t e m a s i n i   y e c h i s h n i n g  s o n l i   u s u l l a r i
Das t lab k i tu s h u nch a l ar
K o ‘ p l a b   a m aliy   m asal a lar   no ch iz iq li   t e n gl a m alar   siste m a s ini   y echishga   o l i b  kelin a di.   U m u m i y   h o lda   n   no m a ’ li m li   n   t a   no c h i z i qli   alg e b r aik   y o k i  
t r a n s e nde n t
te n gla m alar siste m asi q u y i d ag ic h a  y ozil ad i:
f
1( x
1 , x
2 , … , x
n	) = 0
f
2	
( x
1 , x
2 , … , x
n	) = 0
… … … … … … … … …
f
n	
( x
1 , x
2 , … , x
n	) = 0	}
( 3.1	)
Ushbu   ( 3 . 1 ) siste m ani ve k t or   sha k lida   q u y id a gi c ha  y ozish   m u m kin:
f ( x )   =   0. ( 3 .1 ` ) 
  bu   y erda   x   =   ( x
1 ,   x
2 ,   …,   x
n )	
T  
–   ar g u m entl a rni n g   vektor   ustuni;	
f=(f1,f2,…	,fn)T−¿
 f u n k si y ala r n i n g   v ek tor ustuni;   ( … )	T  
–  transpon irlas h  
o peratsi y asi bel g i s i. Bu   siste m a  y echi m in i   t opi s hni   geo m etr i k   ta l qi n da 3. 1 -
ras m dagi   i kki   no m a ’ l u m l i   ikkita te n gla m alar   siste m asining   fazov i y   t a s -v i r i  
m isolida   tush u n t i r i s h   m u m k i n. 
N o c h i z i q li t en gl am alar s i s te m asi
y echi m in i   i z l a sh   –   b u   bitta  
noc h i z iq l i te n gla m a n i   y echis h ga  
nisb a t an   a n c ha  m urakkab  
m a s ala.   B i tta   tengla m ani 
y echish   uchun   qo ‘ llani l g a n  
usullar n i noc h i z iqli       
t e n gla m alar        s iste m a si ni  y echishga  
u m u m lashtirishjuda   k o ‘p   h i -
sobla sh la r ni   tal a b   qiladi   y o ki  
uni   a m a-l i y otda q o ‘ llab   b o ‘l m a y di.  X us u s an,  b u or a li q ni   t e n g   ikkiga   b o ‘ l is h  
u s u liga   tegi s hli.   Shu nga   qa r a m a sd a n ,   nochi z i q li te n gla m a n i   y echis h ning   b ir  
q a t o r   iter a t s ion   usul l ar in i   no c h i z iq l i   te ng la m alar   s is t e- m asini  y echis h g a  
umu m lasht i r ish   m u m kin.
Iteratsiyalar usuli (ketma-ket yaqinlashish usuli) 3. 1 -ras m . I kk i   n o m a ’ lu m li ikkita  
te ng l a m alar siste m asining fa zo viy  
tasviri Yuqoridagi (3.1) chiziqsiz tenglamalar sistemasi ushbu
x
1 = φ
1 ( x
1 , x
2 , … , x
n )
x
2 = φ
2 ( x
1 , x
2 , … , x
n )
… … … … … … … … … …
x
n = φ
n ( x
1 , x
2 , … , x
n )} ( 3.15 )
ko‘rinishga keltirilgan bo‘lsin, bu yerda 	
φ1,φ2,…	,φn - haqiqiy funksiyalar bo‘lib, ular
bu sistema izolyatsiyalangan  ( x
1¿
, x
2¿
, … , x
n¿
)
 yechimining biror atrofida aniqlangan va 
uzluksiz. 
Qulaylik uchun quyidagi vektorni kiritamiz:	
x=(x1,x2,…	,xn)va	φ(x)=(φ1(x),φ2(x),…	,φn(x)).
U holda (3.15) ni quyidagi vector shaklida yozish
mumkin:	
x=φ(x)(3.16	)
(3.16) tenglamaning 	
x¿=(x1¿,x2¿,…	,xn¿)   vektor-ildizini
topish uchun ko‘pincha quyidagi iteratsiyalar usulini qo‘llash
juda qulay:	
x(k+1)=φ(x(k))yoki	
x1(k+1)=	φ1(x1(k),x2(k),…	,xn(k))	
x2(k+1)=φ2(x1(k),x2(k),…	,xn(k))	
…	…	…	…	…	…	…	…	…	…	
xn(k+1)=φn(x1(k),x2(k),…	,xn(k))}
k = 0,1,2 , … , ( 3.17 )
bu   y er d a   y uqoridagi   i n d e ks   i te r a t s i y alar   yaqi n l a s h ishi  
no m eri n i   b i l d ir a d i ;  
x	
( 0)
≈ x ¿
  b oshl a ng ‘ i c h  y aq in la s hi s h.  
Usulning   b l ok - sxe m ali   a l g ori t m i   3 . 6 -
ras m d a   t a svirla n g a n.   A g ar   (3.17)  
itera t si o n
  jara y on  y aqinlashiv c h a n b o ‘ lsa, u holda  
ushbu	
ξ=	limk→∞x(k)(3.18	)
l i m i tik  q i y m at  (3 .17) ten g la m aning   il di z i  bo ‘la d i. 3 . 6 -ras m .  Chiziqsiz  ten g l a- m alar 
si s te m as i ni  y echi s h u c hun  
i ter a t si y alar   usulining blok-sxe m ali
a lg ori t m i . Haqiq a t d an   h a m ,   agar   ( 3 . 18)   m uno s abat   b a j arilg a n   d esak,   u   holda   ( 3 . 17)  
te ng likda k→	∞  bo’yicha 
limitga o’tib,	  φ ( x )
 funksiyalarning uzluksizligidan 
quyidagiga ega bo’lamiz:
lim
k → ∞ x	
( k + 1	)
= φ	
( lim
k → ∞ x	
( k)
)
, y a '
∋ ξ = φ ( ξ )
S h u n d ay   q ilib, 	
ξ -   bu   (3 .16)   v e ktor   tengla m a ni n g   ildizi.   A g ar,   bund a n   t a shqa r i,  
b a rc ha 	
x(k)(k=0,1	,…	)   yaqinlashishlar biror  Ω
 – sohaga tegishli bo’lsa, u holda  ξ = x ¿
 
ekanligi yaqqol ko’rinadi. Soddaroq qilib aytganda, (3.17)iteratsion jarayon	
x(0)=(x1(0),x2(0),…	,xn(0))
 – boshlan g ‘ ich   y aqinl as hishdan   b o sh l an i b ,   b i tta   it e ra t si y ad a n  
k e y in   barcha   argu m entlar   ort t i r - m as i ning   m oduli   be ri lg a n   ε   m iqdordan   ki c hik 
b o ‘l m a gun c ha   d a v o m   ettir i l a di,  y a ’ ni	
‖x(k+1)−	x(k)‖∞=	max1≤i≤n{|xi(k+1)−	xi(k)|}<ε
Bu   s ha r tga t e n g ku c hli  bo ‘ l g a n   q u y i d ag i s h artdan   ham   fo y d ala n ish   m u m kin:	
‖x(k+1)−	x(k)‖2=|x(k+1)−	x(k)|=	max1≤i≤n{√xi(k+1)−	xi(k)}<ε
O d diy   iter at si y a   usuli   d a st urla s h   u c hun   j uda   q u la y ,   a m m o   u   qu y id ag i  
m u hi m ka m c hi likla r ga  e g a :
a)	
‖ φ '
( x )	‖
∞ ≤ q < 1	 
bu   y erda  	φ' -  v ek to r -funksi y a  φ
  ni n g   Y a k o b   m atr i ts a s i , 	‖∙‖∞  
belgi bilan esa matritsa normasi kiritilgan:	
‖
φ '
( x )	‖
∞ = max
1 ≤ i ≤ n	{ ∑
j = 1n
∂ φ
i
∂ x
j	} ;
b) b )  	
‖ φ '
( x )	‖
l ≤ q < 1
  bu   y erda  
φ '
− ¿   v e kto r - fu nksi y a  	φ   n i n g   Yakob   m atrits a si,	
‖
∙‖
l  belgi bilan esa matritsa normasi kiritilgan:	
‖φ'(x)‖l=	max1≤i≤n{∑j=1
n	∂φi	
∂xj};
c) a g ar   b oshl a ng‘ich   y aq i nlashish   an iq   y echi m dan   u z oqroq   tanla n g a n  
b o ‘ lsa,   a -
sh a rtni n g   baja r i l i sh ig a   q ara m asd a n,   usul n ing   y aqinlashish i ga   ka f ol a t  
y o ‘q; de m ak, boshla ng ‘i c h   y aq i nla s hi s hni  t a n l as hn i ng   o ‘ zi ham   s o dd a  
e m as   ek a n;
d)
i ter a t sion   j ara y on   j u d a s e kin   y aqinl as h a di. Od di y   it e ra ts iya l ar  u s u li
Iter a tsi y alar   u sul i ni   dastl ab k i   f ( x )   =   0   u m u m i y   si ste m aga   h am   q o ‘ l l a sh  
m u m kin , bu   y erda   f ( x )   − ¿
v e ktor-fun k si y a   b o ‘l i b ,   i zol y a t si y a la n gan  x* -   ve k to r -
ildiz   a trofi d a ani q l a n g a n   va  u z l uk si z.
Mas a l a n,  b u   s iste m a n i   qu y idagi   k o ‘ r i ni s hda  y oz a y l i k : 	
x=	x+Λ	f(x)
bu   y erda   Λ − ¿
  x os m as   m atr i tsa.   Qu y id ag i bel g ila sh ni   k i r i ta m i z:	
x+Λ	f(x)=φ(x)
      ( 3 . 1 9)
U h o lda   qu y idagiga  e ga  bo ‘ la m i z:
x = φ ( x )
    ( 3 .20)
A g ar   f ( x )   fun k si y a  f '	
(
x	) − ¿
  uzluksiz   h osil a ga   e g a   b o ‘lsa,   u   h o l d a   ( 3 .19)  
for m u-ladan   q u y i d a g i t en gl i k   ke l ib   c hiq ad i:
φ '	
(
x	) = E + Λ f '	(
x( 0))
= 0
A g ar  φ '
( x )
  o ‘zining   normasi   b o ‘ y icha   k ichik   b o ‘lsa,   u   holda   ( 3 .20)  
t e ng l a m a
u c hun   ite r a t si y alar   j a ra y oni   t ez   y aqinla s h a di.   B u   h ol a t n i   e ’ ti b o r ga   o li b ,   Λ  
m atritsani shun d ay   ta n la y m iz k i ,   ushbu
φ '	
(
x( 0))
= E + Λ f '	(
x( 0))
= 0
te n gl i k   b aja r i ls in.   Bu   y erdan,   agar  	
f'(x(0)) -  xos m as   b o ‘l sa,   u   h olda   qu y idagi  
t e n gli k k a ega   bo ‘ la m iz:
Λ = −
| f '	(
x( 0))| − 1
S h u n i   t a ’ ki d l a sh   m u m ink i ,   bu   m az m unan   N y ut o n   m odi f ika ts ion   jara y oni n ing 
( 3 .19)   tengla m aga  q o ‘ l l a n i li shi de m akdir.
Xususan,   a gar   det  	
f'(x(0))=0   bo ‘lsa,   u   h ol d a   boshqa  	x(0)−¿   bosh l a n g ‘ ich  
y aqi n la s hi s hni   ta n l a sh  l oz i m   b o ‘ la d i.
O d diy   it era t si y a   u s ul i   nafaq a t   haqiqiy   ildizla r n i ,   b a lk i   k o m pl e k s   il d izlar n i  
h a m topish   i m konini   ber a di.   O x i r g i   holda   ko m p l eks   boshla n g ‘ i c h   y aqinl a sh i shni
ta n l a sh l o z im   bo ‘ ladi.
Iter a tsi y alar  j ata y oni   y aqinlashi s hi n ing   y etar l i sha r ti   q u y i d a g i c h a.
Faraz   qi l a y l i k,   s h un d ay 	
D	⊂	Rn   y op i q   s o ha   m a v jud   b o ‘ l s in k i ,   bu nda  
ixti y or i y  x ∈ D
  u c h un  	
φ(x)∈D   bo ‘lsin.   X ud d i   shunda y ,   i x t i y oriy   x
1   va   x
2 ∈
D   l ar  
uc hu n   qu y idagi shart   bajar il sin: ‖φ(x1)−φ(x2)‖≤q‖x1−	x2‖,q<1 
bu   yerda 	
‖ ∙‖ − R n
 
d ag i   b i r o r   n or m a.   U   ho lda   osongina   k o ‘rsati s h   m u m ki n ki,   D  
sohada
( 3 .16)   tengla m aning   x *  
y echi m i   m avjud   b o ‘l i b,   (3.17)   itera ts ion   jara y on   t a nla n g a n
i x t i y oriy  x
0 ∈ D
  u chun   shu   y ech i m g a   y aqinl a shadi.   Bunda   qu y i da gi   y aq i nlashish  
te z l i gini baholash o’rinli:	
‖
x m
− x ¿	‖
≤ c q m
1 − q ,
bu yerda c-biror o’zgarmas.
Y u qorid ag i   ( * )   shartni   qano at la n tiruv c h i  	
  fu n k si y a   si qiluv c h an   a k slan i sh  
d e b, ( 3 .18)   tengla m aning   y ech i m i esa  	
  funk si y an in g  qo‘zg‘a l m a s   n u q t asi   d e b 
a t a la d i.
S h u n i   ta ’ k idla y m i zk i ,	
‖xm+1−	x¿‖=‖φ(xm)−φ(x¿)‖≤q‖xm−	x¿‖
shuning   uchun,   odd i y   ite r a t si y a us u lini n g   yaqi n l a shish   t ar ti bi   1   g a t e n g .
A g ar  	
 ( x )   fun k si y a   D   s o h ada   uz l uk s iz   va   differen s ia l l a n uvchan   b o ‘lsa,   u  
holda ( * )   sha rt ning   b a j a r i li shi   u c hun   i x ti y or i y   x ∈
D   l ar   u c hun 	
‖ φ '
( x )	‖ ≤ q < 1
 
sh a r t n ing   b a j arilis h i  y etarl i .
I z o h . 	
 ( x )  f unksi y a  f ( x )  funksi y a o r qali b i r   q i y m at l i  a ni q l a n m a y d i . 	‖ φ '
( x )	‖ ≤ q < 1
 
shar t ni n g   ba j ar i lis h i   u c hun  	
 ( x )   f un k si y ani   q a nday   t an l a s h   l o zi m ?   A g ar   x ( 0)  
nuqta atrofida uzluksiz differensiallanuvchan va  f '
( x )
 matritsa funksiya aynimagan
bo ‘ lsa, unda u m u m i y  h o l da  q u y i d a gicha  y o zi s h   m u m kin:
Xususiy   hollarda  φ ( x )
 fu n ks i y a n i   tanl as h   v a   u shbu 	
‖ φ '
( x )	‖ ≤ q < 1
  s har tn ing  
b a j arilis h ini t ek shi r ish   a n c ha sodda   bo ‘lishi   m u m k i n.
Xususiy   h o l .   H i so b l a shla r ni   a m al i y ot   uchun   qulay   b o ‘lgan   n =2   b o ‘ l g a n   h o l da	
x=φ1(x,y)	
y=φ2(x,y)}(3.21	)
ko ‘r i b  c hiqa y lik. ( 3 .15)  s iste m a n i
ko ‘r i ni s hda   y oz i b   o l a m iz.  φ
1	
( x , y	) , φ
2 ( x , y )
  funki y alar   i tera s i y al o vc h i funksiyalar 
d e b  y ur i t i l a d i .  T a q r ibiy   y ech i m n i   topish   a l g o ri t m i u s hbu xn+1=	φ1(xn,yn)	
yn+1=φ2(xn,yn)}n=	0,1,2	,…	(3.22	)ko ‘r i ni s hda be r i la d i.   Bu   y erda  ( x
0 , y
0 ) − ¿
 bir i n c hi  y aq in l a shish   q i y m at l a r i.
(3.22)  i t e r a si on   hi s obla s h   j ara y oni  y aqinl as huvchi   b o ‘ la d i, a g ar d a ushbu	
|
∂φ1	
∂x|+|
∂φ1	
∂y|≤q1<1	
|
∂φ1	
∂x|+|
∂φ1	
∂y|≤q2<1}
(3.23	)
te n gsiz l i k lar   baja r i l s a .
4
- m i so l .   Q u y id ag i   t e ng la m alar   siste m a sini n g   ite r a t si y al a nuv c hi  φ
1 ( x , y )
 
v a  φ
2 ( x , y )
 f un k si y alar i ni  ( x
0 , y
0 )
  =   ( 0 , 80; 0 , 55) bosh l a n g ‘ ich   nu q t a da   topi n g:	
{
f
1	
( x , y	) = x 2
+ y 2
− 1 = 0
f
2
( x , y	) = x 3
− y
Y
echish.   Bu   si s te m a   uchun     φ
1 ( x , y )
  v a 	
φ2(x,y)  f u n k si y ala r n i   qu y idagi  
k o ‘ rini s hda iz l a y m iz:	
{
φ
1	
( x , y	) = x + α	( x 2
+ y 2
− 1	) + β ( x 3
− y )
2	
( x , y	) = y + γ	( x 2
+ y 2
− 1	) + δ ( x 3
− y )	
α,β,γ,δ 
no m a ’ l i m   ko rffisi y e ntla r ni   topish   u c h un   y uqo r ida   t a kl if   e ti lgan
siste m aga   k iruvc h i   x ususiy   ho si l a lar   v a   ul a r ni n g 	
(x0,y0)   n uq t a d a g i  
qiy m at l arini hisoblaylik:	
∂	f1	
∂x	=2x;∂	f1(x0,y0)	
∂x	=1.6	;∂	f1	
∂y=2y;∂	f1(x0,y0)	
∂y	=1.1	;
∂ f
2
∂ x = 3 x 2
; ∂ f
2 ( x
0 , y
0 )
∂ x = 1.92 ; ∂ f
2
∂ y = − 1 ; ∂ f
2	
( x
0 , y
0	)
∂ y = − 1 ;
B u lar g a   ko ‘ ra  α , β , γ , δ
  n o m a ’ l i m   ko rffisi y entlarga   nisb a tan   qu y idagi 
chiz iq li   a lgeb r a i k t en g l a m alar  s i s t e m asiga   ke l a m i z:	
{
1 + 1,6 α + 1.92 β = 0
1.1 α − β = 0
1.6 γ + 1.92 δ = 0
1 + 1.1 γ − δ = 0
Buni  y echib,  q u y ida g ilarga  e ga   b o ‘ la m i z:
α ≈ − 0.3 ; β ≈ − 0.5 ; γ ≈ − 0.3 ; δ ≈ 0.4
S h u n d ay   qil i b, 	
φ1(x,y)  va 	φ2(x,y) f u n k s i y alar n i n g   qu y id a gi   i f o da la r iga   k e la m iz: {φ
1	
( x , y	) = x − 0.3	( x 2
+ y 2
− 1	) − 0.5 ( x 3
− y )
2	
( x , y	) = y − 0.3	( x 2
+ y 2
− 1	) + 0.4 ( x 3
− y )
E n di   be r ilg a n   tengl a m alar   s is t e m a s ini   taqribiy   y ech i s h   uchun   y aqinlashuv c h a n 
( 3 .22)   iter a t s i y alar   f o rmulasidan   y oki   qu y ida   kelti r i l g a n   Ze y del   u s u li  
for m ulasid a n fo y dal a ni s h   m u m k i n .
Z eydel usuli
O d diy   iteratsi y a   u sulining   iter a t s i on   j a ra y on   y aqinl a shishi n i  
tez l a sh ti r itu ch i  m odifikatsi y alar i dan   bi r i   Ze y d e l   u s u l i   bo ‘lib,   b u  
usulning   as osiy   f o r m u l asi qu y id agi c ha i fo da l a n adi:
x
1	
( k + 1	)
= φ
1 ( x
1	( k)
, x
2	( k)
, … , x
n	( k)
)
x
2	
( k + 1	)
= φ
2 ( x
1	( k)
, x
2	( k)
, … , x
n	( k)
)
… … … … … … … … … … … … … .
x
n	
( k + 1	)
= φ
2 ( x
1	( k)
, x
2	( k)
, … , x
n	( k)
)	} k = 0,1,2 , … ( 3.25 )
Bu iteratsion jarayon bilan bir qatorda ushbu	
f1(ξ,x2(k),…	,xn(k))=0	
f2(x1(k+1),ξ,…	,xn(k))=	0	
…	…	…	…	…	…	…	…	…	…	…	…	…	.	
fn(x1(k+1),…	,xn−1(k+1),ξ)=0	}
(3.26	)
it e ra ts ion   jara y onni   q ar a b,   y aqi n la s hi s h   v e kto r i   k o m po ne n t al ar i ni   shu  
te n gla m alar siste m asidan   topish   m u m kin.   Bu   t e ngl a m alar   s iste m as i n ing   h ar  
bi r i d a   bitta 	
ξ   no -ma ’ l u m   q atnash a di.   A n a   shu 	ξ1   l a r n i n g   qi y m at l ari   (26)  
t e n gl a m alar   siste m asini n g  y an g i   birin c hi 	
x1(k+1)=	ξ1  y aq i nl a s hishi   qiymati   t o ‘p la m i
b o ‘lib   xi z m at   q ila d i .  N avbatd a gi 	
ξ2   l ar   es a   i kkin c hi   y aqinla s h i sh n i n g   qiy m atlar  
t o ‘ p l a m ini   beradi,   y a ’ ni x
2	
( k + 1	)
= ξ
2  va   h o k a z o.   B u   u sulni n g   qula y li g i   shund a ki,   uni  
b itta   t en gla m a   y echi m in i topish g a   q o ‘l la s h   j u da   o d di y ,   a m m o   bu   u s u l  
a m ali y otda   ju d a   katta   h aj m d agi hisobl a shla r ni   baja r i s hni  t al a b  q ilishi  m u mkin.
Xususiy   h o l .   I kki   no m a ’ l u m li   ikk i ta   n oc h iz iq li   t en gla m alar   si s te m as i ni   t a q rib i y 
y echish   uchun   ba ’ zi   h ol l a r da   (3 .22)   ite r asi o n   h i so bl a s h   jara y o n i   o ‘ r n iga  
q u y i d a g i  « Z e y d el jara y oni » dan fo y dal a nish   j u da   qula y :
xn+1=φ1(xn,yn)	
yn+1=φ2(xn+1,yn)}n=0,1,2,3	,… Misol. Quyidagi sistemani oddiy iteratsiya va Zeydel usullari bilan yeching:{
x
1 − x
22
3 = 1
x
2 + 1
x
1 + 1 = − 1 →	{ x
1 = 1 + x
22
3 = φ
1 ( x
1 , x
2 )
x
2 = − 1 − 1
x
1 + 1 = φ
2 ( x
1 , x
2 )	
|
∂ φ
1
∂ x
1	| +| ∂ φ
1
∂ x
2	| =	| 2 ∙ x
2
3	| < 1 ;	| ∂ φ
2
∂ x
1	| +| ∂ φ
2
∂ x
2	| =	| 1(
x
1 + 1	) 2| < 1 ;	
x1>0,x1←1,−1.5	<x2<1.5	;x1(0)=1.5	,x2(0)=0
Yechish : oddiy iteratsiya usuli:
x
1	
( 1)
= 1 ; x
2	( 1)
= − 1 − 1
2.5 = − 1.4 ;	
x1(2)=1+1.96
3	=1.65	;x2(2)=−	1−	1
2=−1.5	;
x
1	
( 3)
= 1 + 2.25
3 = 1.75 ; x
23
= − 1 − 1
2.65 = − 1.38	
εn=2=	max	(|1.61	−1.75	|,|−1.39	+1.36	|)=0.14	;x1¿≈1.61	,x2¿≈−1.39
P a r a m etr l ar n i qo‘ z g ‘atish usu l i
Bu   usulning   g ‘ o y asi   qu y i d ag i c ha.   Da s tlab   ( 3.1)   t en gl a m alar   s is te m asi   bi l an   b ir 
qato r da   a v va l d a n uning   y ec h i m i   m a ’ l u m   b o ‘ l g a n   q u y i d ag i   bi r or   ten g l a m alar  
s i s t e m asi qar a l a di:
h
1	
( 0)(
x
1 , x
2 , … , x
n	) = 0
h
2	
( 0)(
x
1 , x
2 , … , x
n	) = 0
… … … … … … … … … … …
h
n	
( 0)(
x
1 , x
2 , … , x
n	) = 0	} ( 3.27 )
Bunga   m isol   qi l ib   c hi zi qli   a l g eb r a i k   te n gl a m alar   s iste m asini   o l i sh   m u m kin .  
( 3 . 2 7) te n gla m alar   sis t e m as i nin i ng   c h a p   tara f i ni   sh u n d ay   o‘zgartir a m izki,   u  
bi r or   K   s onga ni s ba t an   (3.1)   t e ngl a m aning   c h a p ta r afiga   q o ‘ y ilib, uni   qu y idagi  k o ‘r i nishga   k e l t i r s i n:
bu   y erda   k   =   0 ,1,…, K .   A g ar   K   ning   q i y m ati   k a t ta r o q   t anla n sa   b u  
f un k si y al a r q i y m atlari n ing   k e t m a -k e t   o‘z g ari s hi   k i c h r a y ib   bor a di.   Har   b i r  
o‘zga r t irishd a n   k e y in para m etrla r i q o ‘zg ‘ a ti lg a n   ushbu
h
1( k + 1	)(
x
1 , x
2 , … , x
n	) = 0
h
2	
( k + 1	)(
x
1 , x
2 , … , x
n	) = 0
… … … … … … … … … … …
h
n	
( k + 1	)(
x
1 , x
2 , … , x
n	) = 0	} ( 3.29 )
 te n gla m alar siste m asi ite r a t si o n   u s u l lar  bi l a n   y ech i b  b oril a d i .
( 3 .27)   tengla m alar   s i s t e m asini n g   y ech i m i   ( 3 . 2 9 )   uc hu n   k   =   0   da  
bos h l an g ‘ i c h  y aqi n la s h   deb   fo y da l anil a d i.   ( 3 . 29)   tengl a m alar   siste m a si ni n g  
y echi m i   ( 3 .27)   si s t e m a  y echi m id an   k am   farq   q ilga n l ig i   u c h u n  
itera ts ion   jara y on n ing   y aq i nl a s hishi ta’ m in l a n a di   deb   h is o bla sh i m i z  
m u m k i n.   Sh und a n   k e y in   o l ing a n   y ech i m   ( 3.29 ) siste m aning   k   =   1   d a gi  
b o sh l an g ‘ ich   y aqinl as hi s hi   d eb   qar a l ad i   v a   h oka z o.   O x iriga b o rib,   k   =   K - 1  
b o ‘ lganda   h o s i l   b o ‘ lg a n   ( 3 . 2 9 )   tengla m alar   s iste m asi   dastla bk i   ( 3 .1) 
te n gla m alar siste m asiga  e kvi v a l e n t  b o ‘ lib  q ol a d i.
S h u n d ay   qi l i b,   pa ram etrla r ni   q o ‘ zgat i sh   us u lini n g   bos h l a n g ‘ich  
y aqin l a s hish i ni ta n l as h   m asa l a s i  y echil ad i.
Bu   u suln i ng   noq u la y ligi   shund a ki,   ( 3 .2 7 )   te n gla m alar   s iste m asini  
y echila di gan te n gla m alar   s iste m as i ga   a y lanti r i s h   k a t ta   h i so b   qada m larini  
( h at to   10   d a n   1 0 0   g a c ha) ta l ab   q ilishi   m u m ki n.   S h uning   ushun,   bu   usulning  
q o ‘l l a nil is hi   mashin a da   j u da   k a t ta hisob   v a qt i ni   talab   qili sh i   m u m kin.   Bu  
usulning   afz a ll igi   s h u n da k i,   ( 3 .2 8)   si s t e m a  m uvaffaqi y atli   y echi l g a n d a  
( 3 .29)   siste m a n i n g   y echi m i   b i r   n e c ha   i ter a t s i y a   q ad a m -la r dagina topil is hi 
m u m k i n.
3 . 9 .  P i k ar it e r a t s i yalari
B i r   qator   h o lla r da   (3 . 1)   siste m a   m axsu s   k o‘rinishga   e ga   bo ‘ lib,  u   v e kto r -
m atrit s a  ko ‘ rini s hida   q u y i d agi cha  y ozil a di:
A x − f ( x ) = 0 ,
  ( 3 .30) 
bu   y erda   A   –   be ri lg a n   a y ni m agan   m atrit s a;   f   –   noc h i z iq l i   v ek t or -f u nksi y a.   Bun day te n gla m alar   s iste m asiga,   m asa l an,   n oc h i z i q li   c h e gar a v iy   m asalalarni  
che k li   a y i r m a l ar usuli   bil a n  y echishda   kel i n a di.
( 3 .30)   siste m a u c hun   q u y id ag i  i ter a ts i on   p r osedura   o ‘ rinli:
x ( k + 1 )
= A − 1
f( x( k))
( 3.31 )
v a   u   P i k ar   iterat s i y alari   d e b   a t a la d i.   I ter at si o n   a lgo r it m ni   i xch a m   y ozish  
m a qs a d id a ( 3 .31)   for m ul ada   A	
- 1  
teskari   m atrits a d a n   fo y da l a n ildi.   Asl i da   e s a  
iter a tsi y aning   har   bir q a da m ida qu y idagi  c h i zi qli  a lge brai k t en gla m alar siste m a s i  
y e ch il a d i :	
Ax(k+1)=	f(x(k))
Pikar iteratsiyalarini quyidagi umumlashgan iteratsiyon jarayonning xususiy holi 
deb qarash mumkin: 
x	
( k + 1	)
= x	( k)
− BF	( x( k))
,( 3.32	)
bu yerda B – berilgan aynimagan matritsa. Bu yerdan ko‘rinadiki, agar 	
F(x)=	Ax	−	f(x)va	B=	A−1
bo‘lsa, u holda (3.32) tenglik (3.31) ga aylanadi. Agar B matritsa boshqacharoq 
tanlansa, u holda boshqa bir necha algoritmlar yuzaga keladi, xususan, Nyuton 
usuli algoritmlari va ko‘p o‘chovli kesuvchilar usuli.
B r o y d en us u li
N y uto n -Rafs o n   u s uli   juda   y axs h i   y aqinl ash is h ni   b e r a d i,   a m m o   Yakob  
m atrits a s-ining   tesk a risi ni   h i soblash   juda   k o ‘p   m ashina   v a qt i ni   oladi.   B unday  
ho l l arda   Ya k ob  m atritsasi n i   h iso b la s h   o ‘ r n iga   biror   b o s hqa   y aqi n la sh i sh n i   tu z ish
uslubi   k v a zin yu ton usullar   ( a l go r it la r )   deb   ham   atal a di.   A n a   shu n d ay   us ulla r d a n  
b i r i   bu   1 965   y i l d a   t a klif et il g a n   Bro y den   usuli   bo ‘lib,   u   N y u to n - R a f s on   u s u li n i n g
tako m ill a shtirilgan   v a r i a nti ha m d a   u   y uqo rida   t a’ kidl a ngan   ka m chilikd a n   h o li.  
Bu   u s u l n i n g   qu y ida g i   i k k ita   m u -hi m   farqla r i  m avjud:
1 )   itera ts i y alarni n g   h ar   b i r   qada m ida   Y ak ob   m atrits a s i   t o ‘ g‘r i s i   y o k i  
te s ka r i s i hisobl a n m a y di,  o ‘zgaruv c hilar   c h e t l a shi s h ini   s onli   b a h ola s h   u chun  
q o ‘sh i m cha f u n k si y alar   h iso b l a nil m a y di,   faqatgina   sx e m a   o ‘ zgar m as  
m atritsasini n g   m a v j ud li g ini topish d agi  f unk s i y al a rdangina fo y d a la ni la d i;
2 )   y echi m n i ng   y aqinl as hi s hini   k o ‘ r s a t u v c hi   s o ‘n ish   koef f itsi y e n ti   har   bi r   it e r-atsi y ada   hisobl a na d i,   bu   o‘z   navbatida,   Br o y den   u sulining   y ut u g ‘i  
b o ‘l i b,   N y uto n -Rafson   usuli   y aqin l a sh i sh n i   ka f olat   b era   ol m a y di .   Bundan  
t ash q ari,   bu   ko eff i t s i y ent hatto,   h a li   y ech i m   t opil m agan   b o ‘lsa   h a m ,   h iso b la s h  
xa to lig in i   bahol a sh   i m konini   b e-ra d i.
Bro y den   us u lini n g   m az m u ni   q u y ida g ich a :
N y uto n -Rafs o n   f or m ulasi   b o ‘ y icha   navb a t d a gi 
x ( k + 1 )
y aqin l as h ish n i   olish   u c hun
k - y aq i n l a sh i sh g a  t uz a t m a v e ktor   q o ‘sh i la di ,  y a ’ ni:
Δ x ( k + 1 )
=( − W	( k)) − 1
f	( k)
; x ( k + 1 )
= x ( k )
+ Δ x ( k + 1 )
Bro y den   u sul i da   bu   t u zat m an i ng   h am m a s i d a n   e m a s ,   b a l k i   u n ing   b i r  
qis m i d a n f o y da l a nil m a y di:	
x(k+1)=	x(k)+λ(k)Δx(k+1)
bu   y erda  
λ	
( k)
-   ska l y ar   ko e ffitsi y ent   shunday   tanl a n a di k i, 
f	( k + 1	)
  v ek tor   y o k i  
uni n g  m aksi m al   qiy m at   q abul   q i luv ch i   ele m enti   nor m asi  
m ini m u m lashtiril a di   ( y o k i   k a- m a y t i rila d i).   Agar   N y uto n - R afson   u s u l i ni n g  
y aqinlashi s hi   t a’ m i n l a n g a n   b o ‘lsa,   u holda  
λ	
( k)
> 1  ni   tanl as h   h isobi g a  
Br o y den   u suli   ju d a   ka t ta   y aqinlash i shga   e r i s hadi.  A k si n c ha,   a g ar   N y u t o n -
R a f so n   u sulini n g   y aq i nl a shis h i   ta’ m in m alangan   b o ‘ lsa,   u  holda	
λ(k)<1  ni 
t a n l a s h   h i so b i g a   b u   y aqinl a shish   ta ’ m i n l a n a d i.
Bro y den   usu l i   Ya ko b   m atr i t s a si   va   u n ing   te s ka r is i ni   hi s obl a sh   bilan  
b o g ‘ liq  bo ‘l g a n   N y uto n -Ra f son   usuli n i n g   q i y in c hil i gi n i   bart a raf   qil a di.   Bunga
iter a tsi y aning har   b i r   qada m ida   Yakob   m atritsasini n g   o ‘ r n iga   qu y idagi  
f o r m ula   bilan   b e r i l g a n   y aqinla s hi s hni   hiso b la s h   e v az i ga e r i s hila d i:	
H	(k+1)=	H	(k)−	[λ(k)Δx(k)+H(k)(f(k+1)−	f(k))](Δx(k))TH	(k)	
(Δx(k))TH	(k)(f(k+1)−	f(k))	
(3.33	)
Bro y den   us u lini n g   a l g o ri t m i q u y id a gi c h a :
1. x (0)  
bos h l a n g ‘i c h  y aqinlashi s h   t a nla nad i.
2. Yakob   m atr it s a s i   W	
( 0	)  
ni ng   t es k a r isini   his o b l a s h   bilan   H (0)  
m atrits an ing   bo sh lang ‘ i c h   q iy m ati hisob l a n ad i.
3.	
f  (k) ¿	f
 	x(k)       
,   k = 0 ,1,2, … his o bl a n a di. 4.Δx(k)¿H	(k)  f
 (k)  
hisobla n a d i.
5.	
λ(k)  
ko e ffit s i y ent   shun d a y   tanlana di ki, 	‖ f ( k + 1 )	‖
<	‖ f ( k )	‖
  bo ‘ lsin.
6.	
x(k+1)=	x(k)+λ(k)Δx(k+1)  hisobla n a d i.
7.	
‖f(k+1)‖   m atr i t sa  n or m a s ini n g   y aqinl as hi s hi   te k shi r iladi. 
8.	
(
f ( k + 1 )
− f ( k )	)
  his oblanadi.
9.	
H	(k+1)   m atr i tsa  ( 33 )   f or m u la  b o ‘ y icha  hi sob l a n a d i .
10.
  H i soblash   j ara y oni  3 -q a da m dan   tak r orlan a di.
Misol. Ushbu 
f
1	
( x , y	) = x 5
+ y 3
− xy − 1 = 0
f
2	
( x , y	) = x 2
y + y − 2 = 0	}
te n gla m alar   siste m asining   nolinc h i   y aqinlashish ini  X
0 = ( x
0 , y
0 )
  deb   o li b , 
uning   a n iq   y ech i m i  	
X=	(x,  y)   =  (1;   1)   ni B r o y den   usuli   y orda m i d a a n i q l a n g .
Y echish.   Miso l ning   y ech i m i   jara y o ni n i ,   iter a tsi y alar d a g i  X
k = ( x
k , y
k )
 
y aqinlashishlarni quyidagi jadval shaklida ifodalaylik
Jadv a ldan   k o ‘ rin a diki,   bu   m iso l ning   nati jas iga   N y u t on   u suli   bil an   8   qada m da
e r-ishilg a n   e d i.   B u   e sa   Br o y den   usulining   i t e ra ts i y a   tezligi   N y u t o n  
u suli n ik i d a n   p a st ek a nl i gini   k o ‘ r s at ad i.   S h u n g a   qara m asda n ,   Br o y den   u s uli   o m m a bop   b o ‘l i b,   h i so b l a s h  a m ali y otida   k e ng   qo ‘ ll an ilib   kel i n m oqda.
Tez k or tushish usuli   (gra di yen t lar u s uli)
Y u qorid ag i   (3 . 1)   t e n g l a m alar   siste m a si ni   q aray m iz.   Faraz   qil a y li k ,  fi
 
f u nksi y a-lar   o‘zla r i ni n g   u m u m i y   an i qlan i sh   s o h asida   ha qi q i y  v a   uzluksiz  
differ e nsi a l-lanuv c h a n. Qu y idagi   funksi y ani   qaray m iz:
U	
( x	) =
∑
i = 1n	[
f
i	( x	)] 2
=	( f	( x	) , f ( x )	)
Ravch a nki,   (3 . 1)   sist e m aning   har   b i r   y echi m i   U ( x )   f unk si y ani   n o l ga  
a y lantir a di; va   a ks i ncha   U ( x )   funksi y a  n ol g a t e ng   b o ‘ la d ig a n  x
1 , x
2 , … , x
n   s o n lar  
( 3 . 1)   sis t e m an-ing   i l dizla r i.
Faraz   qi l a m i z k i,   ( 3 .1)   si ste m a   i zo l y atsi y ala n g a n   y echi m ga g ina   e g a  
b o ‘lib,   b u  y echim   U ( x )   f u nksi y an in g   qat ’ iy   m i nim u m   n u qtasi   bo ‘ls i n.   Bu
b il a n   m asala   n   o ‘ lc h ovli fa z oda  U ( x )   funks i y ani n g   m ini m u m i n i   top i shga   olib 
kelin ad i.
Faraz   qila y lik,   x - (1 )   siste m aning   v ektor - i l dizi,   x (	
0) 
esa   u ning  
boshl a ng‘ich   y aqin l a s hi s hi   b o ‘lsin.   x (	
0 ) 
n uqta   o rq a li   U ( x )   funksi y aning   sath  
si r t in i   o ‘tka z a m iz.   A g ar  x (	
0 ) 
n uqta   x   il d i z ga   y etarl i c ha   y aqin   b o ‘l sa,   u   h olda  
biz ni ng   fa r az i m iz   b o‘ y icha   s a t h sirti 	
U	(x)=U	(x(0))  ellipsoidga o’xshash.	
x(0)
 nuqtadan boshlab  U	( x	) = U ( x	( 0)
)
   sirt normali bo‘ylab harakatlanib, bu 
harakatni shu normal qaysidir boshqa bir 	
U	(x)=U	(x(1))    sath sirtiga biror 
x	( 1)
 
nuqtada urinmaguncha davom ettiramiz. Keyin yana 
x	
( 1)
 nuqtadan harakatni	
U	(x)=U	(x(1))
   sath sirti bo‘ylab davom ettirib, bu harakatni shu normal boshqa 
bir yangi  U
( x	) = U ( x	( 2)
)
 sath sirtiga biror 	x(2)  nuqtada urinmaguncha davom 
ettiramiz va hokazo. Vaholanki, 
U	
( x	( 0))
> U	( x	( 1))
> U	( x( 2))
> …  bo‘lsa, u holda biz shu
yo‘l bilan harakatlanib, U(x) ning (3.1) sistemaning izlanayotgan x ildiziga 
mos keluvchi eng kichik qiymatli nuqtasiga tezkor yaqinlashib boramiz. Ushbu ∇ U( x	) =	
[ ∂ U
∂ x
1
…
∂ U
∂ x
n	]  tuzilgan  U(x)  funksiyaning gradiyenti belgilashini kiritib,	
O	M	0M	1,O	M	1M	2,…
 vektorli uchburchaklardan quyidagini yozamiz (xususiy 
holda 3.10-rasmga qarang):	
x(p+1)=	x(p)−	λp∇U	(x(p)),(p=0,1,2	,…	)
Endi    p ko‘paytuvchin aniqlash qoldi. Buning uchun quyidagi skalyar  
funksiyani qaraymiz:
Φ '	
(
λ	) = d
dλ U	[ x	( p)
− λ
p ∇ U	( x	( p))]
= 0 ( 3.40 )
( 3 .40)   t e ngla m aning   e n g   ki c hik   m u s bat   i l di z i   bizga 	
λp   n ing   q i y m atini  
b er a d i .  E n di 	
λp   s o n n i   taq ri biy   t opish   u sulini   q a r ab   c h iqa y l i k.   Faraz  
q il a m i zk i , 	
λ−¿   ki c h ik para m etr   b o ‘ li b ,  u ni n g   kv a dr a ti   va   u n dan   y uq o r i  
da r a j ala r ini   e ’ tiborga  ol m aslik   m u m -kin. U ho l da qu y idagiga  k ela m iz:
Φ	
( λ	) =
∑
i = 1n	{
f
i	[ x( p)
− λ
p ∇ U	( x( p))]} 2	
fi
  f u nksi y ani 	λ   n ing   c h izi ql i  
had l ar i g acha   a n iq l ikd ag i   d ara j ala r iga  
y o y i b ,   qu y id a giga ega   bo ‘ la m iz:	
Φ	(λ)=∑i=1
n	
{fi[x(p)−	λ∂	fi(x(p))	
∂x	∇	U	(x(p))]}
2
Bu  yerda 	
∂	fi	
∂x=[
∂	fi	
∂x1
,∂	fi	
∂x2
,…	,∂	fi	
∂xn]
Bulardan 
3.10-rasm. Ikki o’zgaruvchili 
funksiya holida gradiyent 
usulining geometrik talqini Φ '(
λ	) = − 2
∑
i = 1n	[
f
i	( x( p))
− λ ∂ f
i	( x( p))
∂ x ∇ U	( x( p))]
× ∂ f
i	
( x( p))
∂ x ∇ U	( x( p))
= 0
Natijada
λ
p = ∑
i = 1n
f
i	
( x( p)) ∂ f
i	( x( p))
∂ x ∇ U	( x	( p))
∑
i = 1n	
[
∂ f
i	
( x( p))
∂ x ∇ U	( x( p))] 2 =	
( f
i	( x( p)))
, W	( x( p))
∇ U	( x	( p))	
(
W	( x	( p))
∇ U	( x( p)))
,( W	( x( p))
∇ U	( x	( p)))
Bu yerda  W	
( x	) = ∂ f
i / ∂ x
 – vektor funksiya  f  ning Yakob matritsasi.
Shularga ko’ra quyidagi natijaga kelamiz:
μ
p = 2 λ
p =	
( f p
, W
p W
p'
f	( p))	
(
W
p W
p'
f	( p)
, W
p W
p'
f	( p)) ( 3.41 )
bu yerda soddalik uchun quyidagicha yozuv qabul qilingan:
f p
= f	
( x	( p))
; W
p = W ( x ( p )
)
bularga ko’ra
x	
( p + 1	)
= x	( p)
− μ
p W
p'
f	( p)
p = 0,1,2 , … ¿ ( 3.42 )
Gradiyent tushish algoritmining blok-
sxemasi 3.11-rasmda tasvirlangan.
Misol. Tezkor tushish usuli (gradiyent
usuli) yordamida ushu
x + x 2
− 2 yz = 0.1
y − y 2
+ 3 xz = − 0.2
z + z 2
+ 2 xy = 0.3
}
Tenglamalar sistemasini koordinata
boshi atrofida yotgan ildizlarini
taqribiy hisoblang.
Yechish. Berilganlarga ko’ra
f =	
[ x + x 2
− 2 yz − 0.1
y − y 2
+ 3 xz + 0.2
z + z 2
+ 2 xy − 0.3	] , W =	[ 1 + 2 x − 2 z − 2 y
3 z 1 − 2 y 3 x
2 y 2 x 1 + 2 z	] , x	
( 0)
=	
[ 0
0
0	]
(3.41) va (3.42) formulalar bo‘yicha quyidagi birinchi yaqinlashishni olamiz: μ0=	(f(0),f(0))	
(f(0),f(0))
=1,x(1)=	x(0)−1∙E	f(0)=
[
0.1
−	0.2
0.3	]Xuddi shunday 
x	
( 2)
- ikkinchi yaqinlashishni aniqlaymiz. Bu yerdan:
f
( 0)
=	
[ 0.13
0.05
0.05	] , W
1 =	[ 1.2 − 0.6 0.4
0.9 1.4 0.3
− 0.4 0.2 1.6	] , W
1'
f	
( 1)
=	
[ 0.181
0.002
0.147	]	
W	1W	1'f(1)=
[
0.181
0.002
0.147	]
,μ=	0.13	∙0.2748	+0.05	∙0.2098	+0.05	∙0.1632	
0.2748	2+0.2098	2+0.1632	2	=0.3719	
x(2)=
[
0.1
−0.2
0.3	]
−0.37119	∙
[
0.181
0.002
0.147	]
=
[
0.0327
−0.2007
0.2453	]
Natijaning qanchalik to’g’ri va aniq ekanligini tekshirish uchun tafovut hisoblanadi.
N yuton  u suli
( 3 .1 ` )   t e n gla m alar   siste m asini   y echish   u c hun   ket m a - k et   y aqi n la sh i s h   usulid a n 
f o y da l a na m i z.   Faraz  q ila y lik,  ( 3 .1 ` ) vektor tengla m aning   iz o l y atsi y al a ng a n   x   =   ( x
1 ,
x
2 , …,   x
n ) i l di z la r idan   bi t ta s i  bo ‘lgan   us h b u  k  -inchi  y aq i nl a sh i sh
x	
( k)
= ( x
1	( k)
, x
2	( k)
, … , x
n	( k)
)
top il g a n   b o ‘lsin. U  h olda ( 3 . 1 ` )   vektor   t en gla m aning   a n iq   i ld iz i ni   ushbu	
x=	x(k)+ε(k)(3.2	)
ko ‘r i ni s hda   ifod a l a sh   m u m kin,   bu   y erda  ε ( k )
= ( ε
1
( k)
, ε
2	( k)
, … , ε
n	( k)
)
  x a t o likni   tuz a tuv c hi  
had   ( ildi z ni n g x a toli g i).
( 3 . 2)   i f oda n i   ( 3 . 1 ` )   ga   qo ‘ y i b , q u y i d ag i t en g l a m a n i   hosil   qila m iz:
f	
( x( k)
+ ε	( k))
= 0 ( 3.3 )
Faraz   q i la y l i k ,   f ( x ) -  bu   x   va   x ( k )  
la r ni   o ‘ z   i c hi ga   o lg a n   bi r or   qovariq   D  
soha d a uzluksiz differensiallanuvchan funksiya bo’lsin.
  (3 . 3)   t engla m aning   o ‘ng  
taraf in i   ε	
(k) -kic h ik   v e ktor   dara j ala r i   b o ‘ y icha   q a to rg a   y o y a m iz   v a   bu   qatorn i ng  
c hi zi qli   hadl a ri  bil a ng i na  c he k l a na m iz:
f	
( x( k)
+ ε	( k))
= f	( x	( k))
+ f '	(
x	( k))
ε( k)
( 3.4 ) ( 3 . 4)   f or m ul a d a n kelib chiqadiki,  f’(x)  hosila deb x1,x2,…	,xn−¿  o‘zga r uvc h ilar g a  
n isbat a n  	
f1,f2,…	,fn−¿   funks i y alar   siste m asini n g   qu y i d a gi   Yakob  m atritsasi  
tu s hu n i l ad i:
y ok i  u ni   qi s qa c ha  v e k t o r   sha k lida  y oz s ak,	
f'(x)=W	(x)=[
∂	f1	
∂xj],i,j=1,n
(3.4) sistema bu xatolikni tuzatuvchi had  ε
i	
( k)(
i = 1 , n	)
 larga nisbatan W(x) matritsali 
chiziqli sistema. Bundan (3.4) formulani quyidagicha yozish mumkin:	
f(x(k))+W	(x(k))ε(k)=	0
Bu yerdan, 	
W	(x(k))     maxsus bo‘lmagan matritsa deb faraz qilib, quyidagiga ega 
bo‘lamiz:	
ε(k)=−W	−1(x(k))∙f(x(k))
Natijada ushbu
x	
( k + 1	)
= x	( k)
− W − 1	(
x	( k))
∙ f	( x( k))
( 3.5 )
Nyut o n   usuli   f o r m ula s iga   kela m i z,   b unda   x ( 0 )  
n olin c hi   y aqinl as hi s h   si f a t ida  
i z l a -na y otgan   il d izning   qo‘pol   q i y m atini   oli s h   m u m ki n.
A m ali y otda   ( 3 . 1 ` )   noc h izi qli   t e ngla m alar  
si ste m a s ini   bu   u s u l   b i lan   y echi s h u c hun   hi s obla s hlar  
( 3.5)   for m ula   bo ‘ y icha   qu y ida g i   sha r t   b a j a ril g unga   q a d ar  
d avo m et t i r iladi:	
|
x	( k + 1	)
− x	( k)|
∞ < ε
(3 . 6 )  Y uqoridagila r d a n   k e lib   c hiqib,   N y u t on   usul i n -
ing   a lgo r i t m i ni   q u y idagic h a  y oz a m i z: 1.  x ( 0)  
− ¿
  bo s hlang‘ich   y aqinlashi s h   a n i q l a n a di.
2.   Ildizni n g   qi y m a t i   ( 3 .5)   f o r m ul a   b o ‘y icha ani q l a shti rila di.
3.   Ag a r   ( 3 . 6 )   sha r t   bajarilsa,   u   h olda   m as a la  y echilgan   b o ‘l a di   v a   x( k +1)
− ¿
 (3.1 ` )   ve ktor te n gla m a ni n g   i ldi z i   d e b   q a bul   q ilin a di,   a k s holda e s a 2 -
q a da m g a  o ‘ tila d i.
H i s o bl a shla r da   ( 3 .1 ` )  c hi zi qsiz   tengl a m alar siste m asining   f ( x )   f unk s i y alari
v a   u l a r n ing   h o sil a la r i  m atritsasi  
W ( x )   a niq   beri l g a n   g e y m i z,   u  
h o lda   bu siste m ani   y echis h n ing  
blo k -sxe m asi   3 . 2- r a s m da g i  f ( x )   v e kt o r- f un k s i y a   x   il d izi   at r o f ida   i k ki   m a r -
ta g a c ha   u z l uksiz   differe n s i a l l a nuv c h i ,   Y a k o b   m atr i t -sasi   W ( x )   m ax s us  
b o ‘ l m agan   (a y ni m a g an),   ko ‘p  o ‘ lc ho vli N y ut on usuli   kvad r a t ik   y aqi n la sh is h g a  
ega:	
|
x	( k + 1	)
− x	| < C	| x	( k)
− x	| 2
S h u n i   t a ’ ki d la y m i zki,   us ulning   y aqin l a s hish i ni   t a ’ m in l ash   u c hun  
b oshl a n g ‘i c h  y aqinlashi s hni   m u v a f fa q i y at l i   t a n l a s h   m u hi m   ah a m i y atga   e ga.  
Tengla m alar   sonin in g oshishi   va   u l a r n ing   m ur a kka b li g i   o r ti s hi   bi l an  y aqinl as h i sh  
soh as i tora y ib   b oradi.
Xususiy   h ol .   H is o bl as h   a m ali y otida   n = 2   bo‘lgan   hol   k o ‘p   u chr a y di.   Bun i ,  
m a s a-la n ,   f ( z ) = 0   no ch iz iq li   t e ngla m a ni ng   ko m pleks   il d i z la r i n i   t opis h da   h am  
k o ‘ rish   m u m kin.  H a q i q at a n   ha m ,   a g ar   ushbu
f
1	
( x , y	) = ℜ	( f	( x + jy	)) va f
2	( x , y	) = ℑ	( f	( x + jy	))
f u n k si y ala r n i   kiri t sa k ,   z   -   ko m pleks   i ld i z n ing   x   –   h a qi q iy   q i s m i   v a   y   –   m avh um  
qis m i q u y i d ag i   i k k i   n o m a ’ lu m li   ik k i ta   n oc h izi qli   t e ngla m alar   si ste m a s i n i  
t a q r i b i y  yechishdan hosil bo’ladi:	
{
f1(x,y)=0	
f2(x,y)=0
bu   t a qri b iy   h i sobl a shni   N y ut o n   usuli  y orda m ida  	
 
a ni q l ik   bil a n   b aj ara y l i k.
D   sohaga   t e gish l i  	
X	0
 	 (x0,  y0)  
-   n oli n c h i   y aqin l a s hi s hni   t a nl a b   o la m i z.  3 . 2 -ras m . Chi z iq siz  te n gla m alar 
siste m asini  y echish   uchun   N y uton   u s u-
lini n g   a lg orit m i . ( 3.4)   d a n qu y ida g i  c hiz i qli   al g eb r a i k   t e n g l a m alar sis t e m as i ni   tuz i b ol a m i z:
∂ f
1
∂ x( x − x
0	) + ∂ f
1
∂ y	( y − y
0	) = − f
1	( x
0 , y
0	) ;
∂ f
2
∂ x	
( x − x
0	) + ∂ f
2
∂ y	( y − y
0	) = − f
2	( x
0 , y
0	) ( 3.8 )
Qu y ida g i b el gil a shla r ni   ki r ita m iz:
x − x
0 = Δ x
0 , y − y
0 = Δ y
0 . ( 3.9 )
 ( 3 . 8)   s iste m ani  x
0 , y
0  
  la r ga   n i sb a t a n,   m asalan,   Kra m er   usu l i   y orda m ida
y ech a m i z.  K r a m er f o r m ul a l ar in i qu y idagi c ha  y oza m iz:
Δ x
0 = Δ
1
J , Δ y
0 = Δ
2
J ( 3.10 )
( 3 .10) bu   y erda  ( 8) siste m aning   a sos i y   deter m i nanti  q u y idagich a :
J =	
| ∂ f
1 ( x
0 , y
0 )
∂ x ∂ f
1 ( x
0 , y
0 )
∂ y
∂ f
2 ( x
0 , y
0 )
∂ x ∂ f
2 ( x
0 , y
0 )
∂ y	| ≠ 0 ( 3.11 )
(3.8) sistemaning yordamchi determinantlari esa quyidagicha:	
Δ1=
|
−	f1(x0,y0)	∂	f1(x0,y0)	
∂y	
−	f2(x0,y0)	∂f2(x0,y0)	
∂y	|
;Δ2=
|
∂	f1(x0,y0)	
∂x	−	f1(x0,y0)	
∂	f2(x0,y0)	
∂x	−	f2(x0,y0)|	
Δx0,
 	Δy0
  la r ni n g   to pilgan   qiy m atlar i n i   ( 3 .9)   ga   q o ‘ y ib ,   (3 . 8) s i st e m aning
X 1 = ( x
1 , y
1 )
 
-  bi r inc h i  y aqin l as hi s hi   ko m ponentala r ini  t opa m iz:
x
1 = x
0 + Δ x
0 ; y
1 = y
0 + Δ y
0 ( 3.12 )
Qu y ida g i sha r tn i ng  b a j aril i shi n i  t e k shira m iz:	
max	(|Δx0|,|Δy0|)≤ε
  A g ar   bu   sha r t   ba j ar ilsa,   u   h olda  	
X1
 	=	(x  	,  y1)  
birinchi   y aqinlashi s hni   ( 3.8)  
siste m an- ing   taq r ibiy   y ech i m i   d eb,   hisobl a sh n i   t o ‘ xt a ta m iz.   Agar   ( 3 .13 )   sh a rt 
ajar i l m asa,   u u holda 	
x0−	x1,y0−	y1    
d eb   olib,   y angi   (3 . 8)   c hi zi qli   algebraik  
t en gla m alar   s is t em asini  tuza m iz.   Uni   y echib,  	
X	2
 	=(x2,  y2)  
-   i kkin c hi  
y aqin l ash i sh n i   topa m i z.   T opilg a n  y echi m ni   ε	
 
g a   n i s b a t a n   (3 .13)   b o ‘ y icha   tekshira m iz.   Agar   b u   s hart   baja r ilsa,   u   h o l da ( 3.8)   siste m aning   ta q ribiy   y ech i m i  
d eb  X	2
 	=(x2,  y2)  
ni   q abul   qila m iz.   Agar   ( 3 .13) shart   b a j ar i l m asa,   u   h o l da	
x1=	x2,y1=	y2
  d eb   oli b ,  	X	3
 	=(x3,  y3)  
n i   t o p ish   u c hun  y an g i   ( 3 . 8 )   si s te m a n i  
tuza m iz  v a   hoka z o.   B u   siste m ani   y ech is h n ing   blo k -sxe m asi   3 .3-ras m d a 
tas v irlang a n.
3 . 3 -ras m . Ik k i   n o m a ’ l u m li   ikkita   noc h i z i q l i   ten g la m alar siste m a si ni ta q rib i y  
y echishning   N y u t on   u su l i b l o k -sx e m a si . Chiziqsiz tenglamalar sistemasini Mathcad dasturi yordamida taqribiy 
yechish.{
x1+	x12
10	+ln	x2	
3	=	4.6	
e−x1+√x2+x2=3.1
chiziqsiz t е nglamalar sist е masini oddiy it е ratsiya usuli bilan 0,001 aniqlikda 
yeching.
Е chish:  Avvalo sist е maning ko‘rinishini o‘zgartirib olamiz, ya`ni ularni  x
1  va  x
2  
larga nisbatan yechib olamiz: {
x1=	4.6	−	x12
10	−	ln	x2	
3	
x2=3.1	−e−x1−√x2
;	
{
φ1(x1,x2)=	4.6	−	x12
10	−	ln	x2
3	
φ2(x1,x2)=3.1	−e−x1−√x2Endi qidirilayotgan o‘zgaruvchilar bo‘yicha hususiy hosilalar olinadi:	
∂φ1	
∂x1
=	−	x1
5	,∂φ1	
∂x2
=	−1
3x2
,∂φ2	
∂x1
=	e−x1,∂φ2	
∂x2
=	−1	
2√x2
Aytaylik, boshlang’ich yaqinlashish 	
x1  va 	x2  lar bo‘yicha [1,4] k е smada bo‘lsin. U 
holda hosilalar uchun quyidagi t е ngsizliklar o‘rinli bo‘ladi:	
|
∂ φ
1
∂ x
1	| ≤ 4
5 = 0.8 = p
1	| ∂ φ
1
∂ x
2	| ≤ 1
12 = 0.083 = q
1	
|
∂φ2	
∂x1|≤	1
e4≈0.0069	=	p2|
∂φ2	
∂x2|≤1
4=	0.25	=q2
Dеmak, qaralayotgan kvadratda:	
p1+p2=0.8	+0.0	069	=0.8069	<1
q
1 + q
2 = 0.083 + 0.25 = 0.333 < 1
yaqinlashish shartlari bajariladi.
U holda dastlabki yaqinlashish sifatida  x
1	
( 0)
= 3.5 x
2	( 0)
= 1.7
 ni olib, k е yingi 
yaqinlashishlarni oddiy it е ratsiya usuliga mos dastur ta`minoti yordamida 
aniqlanadi. 
Buning uchun MathCAD dasturining ishchi oynasiga quyidagi buyruqlar 
kiritiladi.	

1 x1 x2( ) 4.6 x1 2
10 ln x2( )
3
2	x1	x2	(	)	3.1	e	x1		x2		iter x1 y1 ( ) k 0
x0 x1
y0 y1
x1  1 x0 y0( )
y1  2 x0 y0( )
x x1 x0
y y1 y0
k k 1
break max x y( )( ) if1while
x1
y1

 

	
iter	3.5	2.2	0.001	(	)	
3.315
1.743


	


	
 Quyida Nyuton usulining Mathcad hisoblash tizimida tuzilgan dasturiy modul 
keltirilganF	x(	)	
x0	x1		x1		3		x0		5		1		
x0		2	x1		x1		2	



 


	
	
J	x(	)	
x1	5	x0		4		
2	x0		x1		
x0	3	x1		2		
x0		2	1		



	



	
	
x	
2
2


	


	

Chiziqsiz tenglamalar sistemasini yechishning Nyuton usuli NSys_N x f J ( )
 x lsolve J x( ) f x( )( )
x x  x
xreturn  x T
 x if1while	
NSys_N	x	F	J	10	4				1
1


	


	
	F	
1
1


	


	


	


	
0
0


	


	
	J	
1
1


	


	


	


	
4
2	
2
2	


	


	
   ORIGIN	1		
F	x	y	(	)	
2	x2		x	y		5	y		1		
x	log	x(	)3		y2	


 


	

J x y( ) x F x y( )
1d
d
x F x y( )
2d
d y F x y( )
1d
d
y F x y( )
2d
d




 





D x y( ) J x y( ) 1

Nyuton X ( )  D X
1 X
2	
	
x
1 X
1
x
2 X
2
Y  F x
1 x
2	
	
X x Y
break max x X
	( ) if1while
X	
X0	
3.5
2.1


	


	

X Nyuton X0 10	
5			
X	
2.667
1.986


	


	
 Foydalanilgan adabiyotlar ro’yxati
1. , Mahmudov A.A, Baxramov S.B « Hisoblash usullari» fanidan o’quv-
uslubiy. Toshkent 2008
2. Ismatullaev   G'.P.,   Jo'raev   G'.U. “Hisoblash   usullaridan    metodik   qo'llanma” 
Toshkent 2007
3. N.N. Kalitkin , “Chislennniye metodi” . ,  О ‘q.q о ‘l . , M., Nauka ., 1978 .
4. M.I. Isroilov ., “Hisoblash metodlari” ., Toshkent . , O´qituvchi , 1988 .
5. A.A. Samarskiy , A.V. Gulin , “Chislenniye metodi” .  О ‘q. q о ‘llanma, M . , 
Nauka , 1989.

Mavzu: Chiziqsiz tenglamalar sistemasini yechish usullari. Nyuton usullari

Mundarija:

  1. Kirish
  2. Iteratsiyalar usuli (ketma-ket yaqinlashish usuli)
  3. Oddiy iteratsiya usuli
  4. Chiziqsiz tenglamalar sistemasini Mathcad dasturi yordamida taqribiy yechish

Foydalanilgan adabiyotlar ro’yxati